

Account No.: 24409

Biological Soil Analysis Report

NEBRASKA MUSHRO	OM LLC	Invoice No. :	1212203
1982 E CITATION WAY	Y	Date Received :	07/19/2016
GRAND ISLAND	NE 68801 Date Reported :	07/21/2016	
		Lab No. :	5659

Results For : NEBRASKA MUSHROOM LLC Sample ID 1 : RED HAWK PLOT 1 Sample ID 2 : 2

PLFA Soil Microbial Community Analysis

Total Living Microbial Biomas Functional Group Diversity In		atty Acid (PLFA	a) ng/g	2931.32 1.575
	Total Biomass	Diversity	Rating	
	< 500	< 1.0	Very Poor	
	500+ - 1000	1.0+ - 1.1	Poor	
	1000+ - 1500	1.1+ - 1.2	Slightly Below Average	
	1500+ - 2500	1.2+ - 1.3	Average	
	2500+ - 3000	1.3+ - 1.4	Slightly Above Average	
	3000+ - 3500	1.4+ - 1.5	Good	
	3500+ - 4000	1.5+ - 1.6	Very Good	
	> 4000	> 1.6	Excellent	
Functional Group			Biomass, PLFA ng/g	% of Total Biomass
Total Bacteria			1491.87	50.89
Gram (+)			969.30	33.07
Actinomycetes			251.56	8.58
Gram (-)			522.57	17.83
Rhizobia			35.82	1.22
Total Fungi			319.61	10.90
Arbuscular Mycorrhizal			114.39	3.90
Saprophytes			205.22	7.00
Protozoa			48.37	1.65
Undifferentiated			1071.48	36.55

Reviewed By : Lance Gunderson	7/21/2016	Сору : 1	Page 1 of 4
Bus: 308-234-2418	web site		ve., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Community Composition Ratios

Fungi:Bacteria

0.2142

Bacteria tend to dominate in systems with fewer organic inputs or residues possibly leading to a lower C:N ratio. In addition, bacteria can be more prominent in the early spring or late fall as soil temperatures are usually cooler and vegetation is less active or absent. Dry conditions, slightly alkaline to alkaline pH values, or increased land disturbance through prolonged and extensive tillage, grazing, or compaction may also favor bacteria. While bacteria are important and needed in the soil ecosystem, fungi are desired and more often considered indicators of good soil health. Increased use of cover crops and/or other organic inputs and less soil disturbance should help the soil support more fungi. Adjustments to pH may also be recommended in some more extreme circumstances.

Predator:Prey

0.0324

This ratio is also expressed as protozoa to bacteria. Protozoa feed on bacteria which helps release nutrients, especially nitrogen. A higher ratio indicates an active community where base level nutrients are sufficient to support higher trophic levels or predators. However, this ratio will always be a relatively low number because the prey will greatly outnumber the predators.

Gram (+):Gram (-)

1.8549

Gram (+) bacteria typically dominate early in the growing season and/or following a fallow period. They also survive better under certain environmental conditions or stressors such as drought or extreme temperatures due to their ability to form spores. Therefore, it is common to see higher values when the community is coming out of dormancy or is stressed. These values will typically begin to approach those of a more balanced bacterial community as the soil conditions become more favorable throughout the growing season. A gram (-) dominated soil may be due to anaerobic conditions or other stressors such as pesticide application or heavy metal contamination.

Scale	Rating
< 0.05	Very Poor
0.05+ - 0.1	Poor
0.1+ - 0.15	Slightly Below Average
0.15+ - 0.2	Average
0.2+ - 0.25	Slightly Above Average
0.25+ - 0.3	Good
0.3+ - 0.35	Very Good
> 0.35	Excellent
•	

Lab No.: 5,659

Scale		Rating
< 0.002		Very Poor
0.002+ - 0.00)5	Poor
0.005+ - 0.00)8	Slightly Below Average
0.008+ - 0.01	l	Average
0.01+ - 0.01	13	Slightly Above Average
0.013+ - 0.01	16	Good
0.016+ - 0.02	2	Very Good
> 0.02		Excellent
Scale	Ratin	g
< 0.5	Gram	(-) Dominated
0.5+ - 1.0	Slight	ly Gram (-) Dominated
1.0+ - 2.0 Balan		ced Bacterial Community
2.0+ - 3.0	Slight	ly Gram(+) Dominated
3.0+ - 4.0 Gram		(+) Dominated
> 4.0	Very	Gram(+) Dominated

Stress and Community Activity Ratios

Sat:Unsat	1.9203	Bacteria alter their membranes under various environmental conditions in order to maintain optimal fluidity for nutrient and waste transport into and out of the cell. Saturated fatty acids may reflect a better adapted community to current environmental conditions. Communities under stressed conditions will increase their proportion of unsaturated fatty acids. This will likely occur most often as a result of low soil moisture or drastic changes in temperature. In general, a higher number indicates a healthier and more stable community.
Mono:Poly	8.2951	The ratio of monounsaturated to polyunsaturated fatty acids is used along with the sat:unsat ratio to further indicate the degree of community stress. A higher ratio indicates less stress, while a lower ratio would depict higher levels of prolonged stress due to conditions such as temperature, moisture, pH, or nutrient availability (starvation).
Pre 16:1ω7c:cy17:0	14.1750	Cyclo (cy) fatty acids are more prominent during stationary phases of growth or under high stress conditions
Pre 18:1ω7c:cy19:0	7.7771	that influence membrane fluidity and growth rates such as temperature, pH, moisture, and nutrient availability. In general, a higher number or all Pre16/Pre18 is better and indicates an actively growing community experiencing fewer stressors. These values are typically higher early in the growing season (planting) when the community is becoming active and experiencing fast growth. The values may begin to drop towards the end of the growing season (harvest) following a decrease in plant growth activity or as the community approaches a stationary growth phase as the temperature/moisture changes between the seasons.

All ratios should be looked at separately, but should also be taken into context and compared with one another to better understand the big picture. These are general guidelines and statements regarding soil microbial communities. In addition, the scales and ranges presented here are specific for the type of extraction and analytical methods used for PLFA analysis at Ward Laboratories, Inc. They will not necessarily reflect ranges derived from other methods of analysis or the literature. The scales can and should be adjusted slightly depending on the time of year and conditions at sampling along with the climate and soil type of specific regions where comparisons are being made. Conditions such as time of year, past and present crop, moisture, pH, and fertility should be noted or measured close to sampling for PLFA analysis for a more in depth interpretation of results.

Reviewed By : Lance Gunderson	7/21/2016	Сору : 1	Page 2 of 4
Bus: 308-234-2418	web site		ve., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Account No.: 24409

Biological Soil Analysis Report

NEBRASKA MUSHRO 1982 E CITATION WAY GRAND ISLAND			Invoice No. : Date Received : Date Reported :	1212203 07/19/2016 07/21/2016
Results For : NEBRASKA M	USHROOM LLC			
Sample ID 1 : RED HAWK PL	LOT 1	Sample ID 3 :		

Sample ID 2 : 2 Lab No. : 5659

Sample ID 4 :

1:1 Soil pH	7.0	ICAP Aluminum, ppm Al	559.90
1:1 Soluble Salts, mmho/cm	0.14	ICAP Iron, ppm Fe	368.5
Excess Lime Rating	1		
Organic Matter, %LOI	5.8	Calculations	
		Organic C:Organic N	8.2
Delaite 000 Durat		Nitrogen mineralization, ppm N	N 29.1
Solvita CO2 Burst		Organic Nitrogen Release, ppr	m N 29.1
CO2-C, ppm C	169.0	Organic Nitrogen Reserve, ppr	m N 0.0
Water Extract		Phosphorus mineralization, pp	m P 25.1
Total Nitrogen, ppm N	31.5	1.5 Organic Phosphorus Reserve, ppm P	
Organic Nitrogen, ppm N	29.1	9.1 Phosphorus Saturation Al/ Fe, %	
Total Organic Carbon, ppm C	240	240 Phosphorus Saturation Ca, %	
H3A Extract		Soil Health	
Nitrate, ppm NO3-N	2.5	Soil Health Calculation	25.87
Ammonium, ppm NH4-N	1.6	Cover Crop Suggestion	10% Legume 90% Grass
Inorganic Nitrogen, ppm N	4.1		
Inorganic (FIA) Phosphorus, ppm P	109.5		
Total (ICAP) Phosphorus, ppm P	135		
Organic Phosphorus, ppm P	25.1		
ICAP Potassium, ppm K	179		
ICAP Calcium, ppm Ca	630		

Copy:1

Page 3 of 4

Haney - Soil Health Analysis Contd.				
Nutrient Quantity Available for Next Crop		Nitrogen Savings by using the Haney Test		
Nitrogen, Ibs N/A	66.5	Traditional evaluation, lbs N/A		4.9
Phosphorus, lbs P2O5/A	324.0	Haney Test N evaluation, lbs N/A		66.5
Potassium, Ibs K2O/A	214.7	Nitrogen Difference, Ibs N/A		61.6
Nutrient Value, \$/A	276.24	N savings, \$/A		39.39

Fertilizer Recommendations, Ibs/A

		Nitrogen	Phosphorus	Potassium	Lime, ECC
Сгор	Yield Goal	<u> </u>	P2O5	K2O	T/A

Page 4 of 4

Account No.: 24409

Biological Soil Analysis Report

5037.12

1.568

NEBRASKA MUSHRO	OM LLC	Invoice No. :	1212203
1982 E CITATION WAY	ľ	Date Received :	07/19/2016
GRAND ISLAND	NE 68801	Date Reported :	07/21/2016
		Lab No. :	5660

Results For : NEBRASKA MUSHROOM LLC Sample ID 1 : RED HAWK PLOT 2 Sample ID 2 : 2

PLFA Soil Microbial Community Analysis

Functional Group Biomass & Diversity

Total Living Microbial Biomass, Phospholipid Fatty Acid (PLFA) ng/g Functional Group Diversity Index

Total Biomass	Diversity	Rating
< 500	< 1.0	Very Poor
500+ - 1000	1.0+ - 1.1	Poor
1000+ - 1500	1.1+ - 1.2	Slightly Below Average
1500+ - 2500	1.2+ - 1.3	Average
2500+ - 3000	1.3+ - 1.4	Slightly Above Average
3000+ - 3500	1.4+ - 1.5	Good
3500+ - 4000	1.5+ - 1.6	Very Good
> 4000	> 1.6	Excellent

Functional Group	Biomass, PLFA ng/g	% of Total Biomass
Total Bacteria	2046.18	40.62
Gram (+)	1270.24	25.22
Actinomycetes	338.92	6.73
Gram (-)	775.94	15.40
Rhizobia	34.11	0.68
Total Fungi	400.83	7.96
Arbuscular Mycorrhizal	133.89	2.66
Saprophytes	266.94	5.30
Protozoa	94.92	1.88
Undifferentiated	2495.20	49.54

Reviewed By : Lance Gunderson	7/21/2016	Copy:1	Page 1 of 4
Bus: 308-234-2418	web site	•	/e., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Community Composition Ratios

Fungi:Bacteria

0.1959

Bacteria tend to dominate in systems with fewer organic inputs or residues possibly leading to a lower C:N ratio. In addition, bacteria can be more prominent in the early spring or late fall as soil temperatures are usually cooler and vegetation is less active or absent. Dry conditions, slightly alkaline to alkaline pH values, or increased land disturbance through prolonged and extensive tillage, grazing, or compaction may also favor bacteria. While bacteria are important and needed in the soil ecosystem, fungi are desired and more often considered indicators of good soil health. Increased use of cover crops and/or other organic inputs and less soil disturbance should help the soil support more fungi. Adjustments to pH may also be recommended in some more extreme circumstances.

Predator:Prey

0.0464

This ratio is also expressed as protozoa to bacteria. Protozoa feed on bacteria which helps release nutrients, especially nitrogen. A higher ratio indicates an active community where base level nutrients are sufficient to support higher trophic levels or predators. However, this ratio will always be a relatively low number because the prey will greatly outnumber the predators.

Gram (+):Gram (-)

1.6370

Gram (+) bacteria typically dominate early in the growing season and/or following a fallow period. They also survive better under certain environmental conditions or stressors such as drought or extreme temperatures due to their ability to form spores. Therefore, it is common to see higher values when the community is coming out of dormancy or is stressed. These values will typically begin to approach those of a more balanced bacterial community as the soil conditions become more favorable throughout the growing season. A gram (-) dominated soil may be due to anaerobic conditions or other stressors such as pesticide application or heavy metal contamination.

Scale	Rating
< 0.05	Very Poor
0.05+ - 0.1	Poor
0.1+ - 0.15	Slightly Below Average
0.15+ - 0.2	Average
0.2+ - 0.25	Slightly Above Average
0.25+ - 0.3	Good
0.3+ - 0.35	Very Good
> 0.35	Excellent

Scale		Rating
< 0.002		Very Poor
0.002+ - 0.00)5	Poor
0.005+ - 0.00)8	Slightly Below Average
0.008+ - 0.01		Average
0.01+ - 0.01	3	Slightly Above Average
0.013+ - 0.01	6	Good
0.016+ - 0.02	2	Very Good
> 0.02		Excellent
Scale	Ratin	g
< 0.5	Gram	(-) Dominated
0.5+ - 1.0	Slight	ly Gram (-) Dominated
1.0+ - 2.0 Balan		ced Bacterial Community
2.0+ - 3.0 Slight		ly Gram(+) Dominated
3.0+ - 4.0 Gram		(+) Dominated
> 4.0	Very	Gram(+) Dominated

Stress and Community Activity Ratios

Sat:Unsat	1.5028	Bacteria alter their membranes under various environmental conditions in order to maintain optimal fluidity for nutrient and waste transport into and out of the cell. Saturated fatty acids may reflect a better adapted community to current environmental conditions. Communities under stressed conditions will increase their proportion of unsaturated fatty acids. This will likely occur most often as a result of low soil moisture or drastic changes in temperature. In general, a higher number indicates a healthier and more stable community.
Mono:Poly	3.7032	The ratio of monounsaturated to polyunsaturated fatty acids is used along with the sat:unsat ratio to further indicate the degree of community stress. A higher ratio indicates less stress, while a lower ratio would depict higher levels of prolonged stress due to conditions such as temperature, moisture, pH, or nutrient availability (starvation).
Pre 16:1ω7c:cy17:0	ALL PRE 16:1	Cyclo (cy) fatty acids are more prominent during stationary phases of growth or under high stress conditions
Pre 18:1ω7c:cy19:0	14.5392	that influence membrane fluidity and growth rates such as temperature, pH, moisture, and nutrient availability. In general, a higher number or all Pre16/Pre18 is better and indicates an actively growing community experiencing fewer stressors. These values are typically higher early in the growing season (planting) when the community is becoming active and experiencing fast growth. The values may begin to drop towards the end of the growing season (harvest) following a decrease in plant growth activity or as the community approaches a stationary growth phase as the temperature/moisture changes between the seasons.

All ratios should be looked at separately, but should also be taken into context and compared with one another to better understand the big picture. These are general guidelines and statements regarding soil microbial communities. In addition, the scales and ranges presented here are specific for the type of extraction and analytical methods used for PLFA analysis at Ward Laboratories, Inc. They will not necessarily reflect ranges derived from other methods of analysis or the literature. The scales can and should be adjusted slightly depending on the time of year and conditions at sampling along with the climate and soil type of specific regions where comparisons are being made. Conditions such as time of year, past and present crop, moisture, pH, and fertility should be noted or measured close to sampling for PLFA analysis for a more in depth interpretation of results.

Reviewed By : Lance Gunderson	7/21/2016	Copy:1	Page 2 of 4
Bus: 308-234-2418	web site		ve., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Lab No.: 5,660

Account No.: 24409

Biological Soil Analysis Report

NEBRASKA MUSHROO 1982 E CITATION WAY GRAND ISLAND		Invoice No. Date Received Date Reported	: 07/19/2016
Results For : NEBRASKA M	USHROOM LLC		
Sample ID 1 : RED HAWK PL	_OT 2	Sample ID 3 :	
Sample ID 2 : 2		Sample ID 4 :	

Lab No.: 5660

Sample ID 4 :

Н	Haney - Soil Health Analysis				
1:1 Soil pH	7.1	ICAP Aluminum, ppm Al	558.70		
1:1 Soluble Salts, mmho/cm	0.15	ICAP Iron, ppm Fe	397.1		
Excess Lime Rating	1				
Organic Matter, %LOI	8.2	Calculations			
		Organic C:Organic N	8.7		
		Nitrogen mineralization, ppm N	32.4		
Solvita CO2 Burst		Organic Nitrogen Release, ppr	m N 32.4		
CO2-C, ppm C	162.0	Organic Nitrogen Reserve, ppr	m N 0.0		
Water Extract		Phosphorus mineralization, pp	m P 28.5		
Total Nitrogen, ppm N	35.0	Organic Phosphorus Reserve,	ppm P 6.4		
Organic Nitrogen, ppm N	32.4	Phosphorus Saturation Al/ Fe,	% 18.5		
Total Organic Carbon, ppm C	283	Phosphorus Saturation Ca, %	26.9		
H3A Extract		Soil Health			
Nitrate, ppm NO3-N	2.5	Soil Health Calculation	24.66		
Ammonium, ppm NH4-N	2.5	Cover Crop Suggestion	10% Legume 90% Grass		
Inorganic Nitrogen, ppm N	4.9				
Inorganic (FIA) Phosphorus, ppm P	141.5				
Total (ICAP) Phosphorus, ppm P	176				
Organic Phosphorus, ppm P	34.9				
ICAP Potassium, ppm K	200				
ICAP Calcium, ppm Ca	656				

7/21/2016

Haney - Soil Health Analysis Contd.				5660
Nutrient Quantity Available for Next Crop		Nitrogen Savings by using the Haney Test		
Nitrogen, Ibs N/A	74.8	Traditional evaluation, lbs N/A		4.9
Phosphorus, Ibs P2O5/A	390.9	Haney Test N evaluation, lbs N/A		74.8
Potassium, Ibs K2O/A	239.6	Nitrogen Difference, Ibs N/A		69.8
Nutrient Value, \$/A	320.12	N savings, \$/A		44.70

Fertilizer Recommendations, Ibs/A

		Nitrogen	Phosphorus	Potassium	Lime, ECC
Сгор	Yield Goal	<u> </u>	P2O5	K2O	T/A

Account No.: 24409

Biological Soil Analysis Report

3901.04

1.335

NEBRASKA MUSHROOM LLC		Invoice No. :	1212203
1982 E CITATION WAY	<i>l</i>	Date Received :	07/19/2016
GRAND ISLAND	NE 68801	Date Reported :	07/21/2016
		Lab No. :	5661

Results For : NEBRASKA MUSHROOM LLC Sample ID 1 : RED HAWK CONTROL Sample ID 2 : 2

PLFA Soil Microbial Community Analysis

Functional Group	b Biomass &	& Diversitv

Total Living Microbial Biomass, Phospholipid Fatty Acid (PLFA) ng/g Functional Group Diversity Index

Total Biomass	Diversity	Rating
< 500	< 1.0	Very Poor
500+ - 1000	1.0+ - 1.1	Poor
1000+ - 1500	1.1+ - 1.2	Slightly Below Average
1500+ - 2500	1.2+ - 1.3	Average
2500+ - 3000	1.3+ - 1.4	Slightly Above Average
3000+ - 3500	1.4+ - 1.5	Good
3500+ - 4000	1.5+ - 1.6	Very Good
> 4000	> 1.6	Excellent

Functional Group	Biomass, PLFA ng/g	% of Total Biomass
Total Bacteria	1548.19	39.69
Gram (+)	1012.79	25.96
Actinomycetes	236.93	6.07
Gram (-)	535.40	13.72
Rhizobia	5.22	0.13
Total Fungi	200.78	5.15
Arbuscular Mycorrhizal	75.41	1.93
Saprophytes	125.37	3.21
Protozoa	0.00	0.00
Undifferentiated	2152.06	55.17

Reviewed By : Lance Gunderson	7/21/2016	Copy : 1	Page 1 of 4
Bus: 308-234-2418	web site		e., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		ska 68848-0788

Community Composition Ratios

Fungi:Bacteria

0.1297

Bacteria tend to dominate in systems with fewer organic inputs or residues possibly leading to a lower C:N ratio. In addition, bacteria can be more prominent in the early spring or late fall as soil temperatures are usually cooler and vegetation is less active or absent. Dry conditions, slightly alkaline to alkaline pH values, or increased land disturbance through prolonged and extensive tillage, grazing, or compaction may also favor bacteria. While bacteria are important and needed in the soil ecosystem, fungi are desired and more often considered indicators of good soil health. Increased use of cover crops and/or other organic inputs and less soil disturbance should help the soil support more fungi. Adjustments to pH may also be recommended in some more extreme circumstances.

Predator:Prey

ALL PREY

This ratio is also expressed as protozoa to bacteria. Protozoa feed on bacteria which helps release nutrients, especially nitrogen. A higher ratio indicates an active community where base level nutrients are sufficient to support higher trophic levels or predators. However, this ratio will always be a relatively low number because the prey will greatly outnumber the predators.

Gram (+):Gram (-)

1.8917

Gram (+) bacteria typically dominate early in the growing season and/or following a fallow period. They also survive better under certain environmental conditions or stressors such as drought or extreme temperatures due to their ability to form spores. Therefore, it is common to see higher values when the community is coming out of dormancy or is stressed. These values will typically begin to approach those of a more balanced bacterial community as the soil conditions become more favorable throughout the growing season. A gram (-) dominated soil may be due to anaerobic conditions or other stressors such as pesticide application or heavy metal contamination.

Scale	Rating
< 0.05	Very Poor
0.05+ - 0.1	Poor
0.1+ - 0.15	Slightly Below Average
0.15+ - 0.2	Average
0.2+ - 0.25	Slightly Above Average
0.25+ - 0.3	Good
0.3+ - 0.35	Very Good
> 0.35	Excellent
- 0.00	

Scale		Rating
< 0.002		Very Poor
0.002+ - 0.00)5	Poor
0.005+ - 0.00)8	Slightly Below Average
0.008+ - 0.01	I	Average
0.01+ - 0.01	13	Slightly Above Average
0.013+ - 0.01	16	Good
0.016+ - 0.02	2	Very Good
> 0.02		Excellent
Scale	Ratin	g
< 0.5	Gram	(-) Dominated
0.5+ - 1.0	Slight	ly Gram (-) Dominated
1.0+ - 2.0	Balan	ced Bacterial Community
2.0+ - 3.0	Slightly Gram(+) Dominated	
3.0+ - 4.0	Gram(+) Dominated	
> 4.0	Very	Gram(+) Dominated

Stress and Community Activity Ratios

Sat:Unsat	2.8483	Bacteria alter their membranes under various environmental conditions in order to maintain optimal fluidity for nutrient and waste transport into and out of the cell. Saturated fatty acids may reflect a better adapted community to current environmental conditions. Communities under stressed conditions will increase their proportion of unsaturated fatty acids. This will likely occur most often as a result of low soil moisture or drastic changes in temperature. In general, a higher number indicates a healthier and more stable community.
Mono:Poly	7.7400	The ratio of monounsaturated to polyunsaturated fatty acids is used along with the sat:unsat ratio to further indicate the degree of community stress. A higher ratio indicates less stress, while a lower ratio would depict higher levels of prolonged stress due to conditions such as temperature, moisture, pH, or nutrient availability (starvation).
Pre 16:1ω7c:cy17:0	NONE FOUND	Cyclo (cy) fatty acids are more prominent during stationary phases of growth or under high stress conditions
Pre 18:1ω7c:cy19:0	88.6172	that influence membrane fluidity and growth rates such as temperature, pH, moisture, and nutrient availability. In general, a higher number or all Pre16/Pre18 is better and indicates an actively growing community experiencing fewer stressors. These values are typically higher early in the growing season (planting) when the community is becoming active and experiencing fast growth. The values may begin to drop towards the end of the growing season (harvest) following a decrease in plant growth activity or as the community approaches a stationary growth phase as the temperature/moisture changes between the seasons.

All ratios should be looked at separately, but should also be taken into context and compared with one another to better understand the big picture. These are general guidelines and statements regarding soil microbial communities. In addition, the scales and ranges presented here are specific for the type of extraction and analytical methods used for PLFA analysis at Ward Laboratories, Inc. They will not necessarily reflect ranges derived from other methods of analysis or the literature. The scales can and should be adjusted slightly depending on the time of year and conditions at sampling along with the climate and soil type of specific regions where comparisons are being made. Conditions such as time of year, past and present crop, moisture, pH, and fertility should be noted or measured close to sampling for PLFA analysis for a more in depth interpretation of results.

Reviewed By : Lance Gunderson	7/21/2016	Copy : 1	Page 2 of 4
Bus: 308-234-2418	web site		ve., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Lab No. : 5,661

Account No.: 24409

Biological Soil Analysis Report

NEBRASKA MUSHRO 1982 E CITATION WAY GRAND ISLAND		Invoice No. Date Received Date Reported	: 07/19/2016
Results For : NEBRASKA M	USHROOM LLC		
Sample ID 1 : RED HAWK CO	ONTROL	Sample ID 3 :	
Sample ID 2 : 2		Sample ID 4 :	

Lab No.: 5661

Sample ID 4 :

H	aney - Soil H	ealth Analysis	
1:1 Soil pH	7.4	ICAP Aluminum, ppm Al	301.60
1:1 Soluble Salts, mmho/cm	0.13	ICAP Iron, ppm Fe	196.4
Excess Lime Rating	1		
Organic Matter, %LOI	6.3	Calculations	
		Organic C:Organic N	8.5
		Nitrogen mineralization, ppm N	N 18.9
Solvita CO2 Burst		Organic Nitrogen Release, ppr	m N 18.9
CO2-C, ppm C	141.0	Organic Nitrogen Reserve, pp	m N 0.0
Water Extract		Phosphorus mineralization, pp	m P 19.9
Total Nitrogen, ppm N	22.2	Organic Phosphorus Reserve,	ppm P < 0.1
Organic Nitrogen, ppm N	18.9	Phosphorus Saturation Al/ Fe,	% 20.6
Total Organic Carbon, ppm C	161	Phosphorus Saturation Ca, %	15.3
H3A Extract		Soil Health	
Nitrate, ppm NO3-N	2.9	Soil Health Calculation	20.04
Ammonium, ppm NH4-N	2.3	Cover Crop Suggestion	10% Legume 90% Grass
Inorganic Nitrogen, ppm N	5.2		
Inorganic (FIA) Phosphorus, ppm P	82.9		
Total (ICAP) Phosphorus, ppm P	103		
Organic Phosphorus, ppm P	19.9		
ICAP Potassium, ppm K	113		
ICAP Calcium, ppm Ca	672		

7/21/2016

Copy:1

Page 3 of 4

Haney	[,] - Soil Healt	h Analysis Contd.	Lab No. :	5661
Nutrient Quantity Available for Next Crop		Nitrogen Savings by using the Haney Test		
Nitrogen, Ibs N/A	48.3	Traditional evaluation, lbs N/A		5.8
Phosphorus, Ibs P2O5/A	248.9	Haney Test N evaluation, lbs N/A		48.3
Potassium, Ibs K2O/A	136.0	Nitrogen Difference, lbs N/A		42.4
Nutrient Value, \$/A	195.93	N savings, \$/A		27.15

Fertilizer Recommendations, Ibs/A

		Nitrogen	Phosphorus	Potassium	Lime, ECC
Сгор	Yield Goal	<u> </u>	P2O5	K2O	T/A

Account No.: 24409

Biological Soil Analysis Report

1889.21

% of Total Biomass 55.96 45.99 12.32

1.102

NEBRASKA MUSHROOM LLC		Invoice No. :	1212203
1982 E CITATION WAY	<i>I</i>	Date Received :	07/19/2016
GRAND ISLAND NE 68801		Date Reported :	07/21/2016
		Lab No. :	5662

Results For : NEBRASKA MUSHROOM LLC Sample ID 1 : CROPS PLOT 1 Sample ID 2 :

PLFA Soil Microbial Community Analysis

	Total Biomass	Diversity	Rating
	< 500	< 1.0	Very Poor
	500+ - 1000	1.0+ - 1.1	Poor
	1000+ - 1500	1.1+ - 1.2	Slightly Below Average
	1500+ - 2500	1.2+ - 1.3	Average
	2500+ - 3000	1.3+ - 1.4	Slightly Above Average
	3000+ - 3500	1.4+ - 1.5	Good
	3500+ - 4000	1.5+ - 1.6	Very Good
	> 4000	> 1.6	Excellent
Functional Group			Biomass, PLFA ng/g
Total Bacteria			1057.22
Gram (+)			868.90
Actinomycetes			232.67
Gram (-)			188.32
			0.00

Gram (-)	188.32	9.97
Rhizobia	0.00	0.00
Total Fungi	49.62	2.63
Arbuscular Mycorrhizal	5.15	0.27
Saprophytes	44.47	2.35
Protozoa	0.00	0.00
Undifferentiated	782.37	41.41

Reviewed By : Lance Gunderson	7/21/2016	Сору : 1	Page 1 of 4
Bus: 308-234-2418	web site	4007 Cherry Av	/e., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com	Kearney, Nebra	aska 68848-0788

Community Composition Ratios

Fungi:Bacteria

0.0469

Bacteria tend to dominate in systems with fewer organic inputs or residues possibly leading to a lower C:N ratio. In addition, bacteria can be more prominent in the early spring or late fall as soil temperatures are usually cooler and vegetation is less active or absent. Dry conditions, slightly alkaline to alkaline pH values, or increased land disturbance through prolonged and extensive tillage, grazing, or compaction may also favor bacteria. While bacteria are important and needed in the soil ecosystem, fungi are desired and more often considered indicators of good soil health. Increased use of cover crops and/or other organic inputs and less soil disturbance should help the soil support more fungi. Adjustments to pH may also be recommended in some more extreme circumstances.

Predator:Prey

ALL PREY

This ratio is also expressed as protozoa to bacteria. Protozoa feed on bacteria which helps release nutrients, especially nitrogen. A higher ratio indicates an active community where base level nutrients are sufficient to support higher trophic levels or predators. However, this ratio will always be a relatively low number because the prey will greatly outnumber the predators.

Gram (+):Gram (-)

4.6140

Gram (+) bacteria typically dominate early in the growing season and/or following a fallow period. They also survive better under certain environmental conditions or stressors such as drought or extreme temperatures due to their ability to form spores. Therefore, it is common to see higher values when the community is coming out of dormancy or is stressed. These values will typically begin to approach those of a more balanced bacterial community as the soil conditions become more favorable throughout the growing season. A gram (-) dominated soil may be due to anaerobic conditions or other stressors such as pesticide application or heavy metal contamination.

Scale	Rating
< 0.05	Very Poor
0.05+ - 0.1	Poor
0.1+ - 0.15	Slightly Below Average
0.15+ - 0.2	Average
0.2+ - 0.25	Slightly Above Average
0.25+ - 0.3	Good
0.3+ - 0.35	Very Good
> 0.35	Excellent

Scale		Rating	
< 0.002		Very Poor	
0.002+ - 0.00)5	Poor	
0.005+ - 0.00)8	Slightly Below Average	
0.008+ - 0.01	l	Average	
0.01+ - 0.01	13	Slightly Above Average	
0.013+ - 0.01	16	Good	
0.016+ - 0.02	2	Very Good	
> 0.02		Excellent	
Scale	Ratin	g	
< 0.5	Gram	(-) Dominated	
0.5+ - 1.0	Slightly Gram (-) Dominated		
1.0+ - 2.0	Balanced Bacterial Community		
2.0+ - 3.0	Slightly Gram(+) Dominated		
3.0+ - 4.0	Gram(+) Dominated		
> 4.0	Very	Gram(+) Dominated	

Stress and Community Activity Ratios

Sat:Unsat	4.4615	Bacteria alter their membranes under various environmental conditions in order to maintain optimal fluidity for nutrient and waste transport into and out of the cell. Saturated fatty acids may reflect a better adapted community to current environmental conditions. Communities under stressed conditions will increase their proportion of unsaturated fatty acids. This will likely occur most often as a result of low soil moisture or drastic changes in temperature. In general, a higher number indicates a healthier and more stable community.
Mono:Poly	ALL MONO	The ratio of monounsaturated to polyunsaturated fatty acids is used along with the sat:unsat ratio to further indicate the degree of community stress. A higher ratio indicates less stress, while a lower ratio would depict higher levels of prolonged stress due to conditions such as temperature, moisture, pH, or nutrient availability (starvation).
Pre 16:1ω7c:cy17:0	NONE FOUND	Cyclo (cy) fatty acids are more prominent during stationary phases of growth or under high stress conditions
Pre 18:1ω7c:cy19:0	37.8798	that influence membrane fluidity and growth rates such as temperature, pH, moisture, and nutrient availability. In general, a higher number or all Pre16/Pre18 is better and indicates an actively growing community experiencing fewer stressors. These values are typically higher early in the growing season (planting) when the community is becoming active and experiencing fast growth. The values may begin to drop towards the end of the growing season (harvest) following a decrease in plant growth activity or as the community approaches a stationary growth phase as the temperature/moisture changes between the seasons.

All ratios should be looked at separately, but should also be taken into context and compared with one another to better understand the big picture. These are general guidelines and statements regarding soil microbial communities. In addition, the scales and ranges presented here are specific for the type of extraction and analytical methods used for PLFA analysis at Ward Laboratories, Inc. They will not necessarily reflect ranges derived from other methods of analysis or the literature. The scales can and should be adjusted slightly depending on the time of year and conditions at sampling along with the climate and soil type of specific regions where comparisons are being made. Conditions such as time of year, past and present crop, moisture, pH, and fertility should be noted or measured close to sampling for PLFA analysis for a more in depth interpretation of results.

Reviewed By : Lance Gunderson	7/21/2016	Copy:1	Page 2 of 4
Bus: 308-234-2418	web site	,	e., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Lab No.: 5,662

Account No.: 24409

Biological Soil Analysis Report

NEBRASKA MUSHROOM LLC 1982 E CITATION WAY GRAND ISLAND NE 68801		Invoice No Date Received Date Reported	1: 07/19/2010
Results For : NEBRASKA M	USHROOM LLC		
Sample ID 1 : CROPS PLOT	1	Sample ID 3 :	

Sample ID 2 :

Lab No. : 5662

Sample ID 4 :

Haney - Soil Health Analysis

1:1 Soil pH	6.2	ICAP Aluminum, ppm Al	216.90
1:1 Soluble Salts, mmho/cm	0.10	ICAP Iron, ppm Fe	146.3
Excess Lime Rating	1		
Organic Matter, %LOI	6.0	Calculations	
WDRF Buffer pH	6.7	Organic C:Organic N	9.0
		Nitrogen mineralization, ppm N	12.2
Solvita CO2 Burst		Organic Nitrogen Release, ppm	N 12.2
CO2-C, ppm C	155.0	Organic Nitrogen Reserve, ppm	N 0.0
Water Extract		Phosphorus mineralization, ppm	n P 9.2
Total Nitrogen, ppm N	15.3	Organic Phosphorus Reserve, p	opm P < 0.1
Organic Nitrogen, ppm N	12.2	Phosphorus Saturation Al/ Fe, %	% 6.9
Total Organic Carbon, ppm C	110	Phosphorus Saturation Ca, %	8.2
H3A Extract		Soil Health	
Nitrate, ppm NO3-N	1.9	Soil Health Calculation	19.58
Ammonium, ppm NH4-N	1.7	Cover Crop Suggestion	20% Legume 80% Grass
Inorganic Nitrogen, ppm N	3.6	Cover orop ouggestion	
Inorganic (FIA) Phosphorus, ppm P	16.0		
Total (ICAP) Phosphorus, ppm P	25		
Organic Phosphorus, ppm P	9.2		
ICAP Potassium, ppm K	92		
ICAP Calcium, ppm Ca	307		

Haney - Soil Health Analysis Contd.			Lab No. :	5662
Nutrient Quantity Available for Next Crop		Nitrogen Savings by using the Haney Tes	t	
Nitrogen, lbs N/A	31.7	Traditional evaluation, lbs N/A		3.9
Phosphorus, Ibs P2O5/A	97.5	Haney Test N evaluation, lbs N/A		31.7
Potassium, lbs K2O/A	110.1	Nitrogen Difference, lbs N/A		27.8
Nutrient Value, \$/A	113.40	N savings, \$/A		17.80

Сгор	Yield Goal	Nitrogen N	Phosphorus P2O5	Potassium K2O	Lime, ECC T/A
					1.2

Reviewed By : La	nce Gunderson
------------------	---------------

Bus: 308-234-2418 Fax: 308-234-1940 7/21/2016

Copy : 1

Page 4 of 4

Account No.: 24409

Biological Soil Analysis Report

2618.77

1.608

NEBRASKA MUSHROOM LLC		Invoice No. :	1212203
1982 E CITATION WAY	ľ	Date Received :	07/19/2016
GRAND ISLAND	NE 68801	Date Reported :	07/21/2016
		Lab No. :	5663

Results For : NEBRASKA MUSHROOM LLC Sample ID 1 : CROPS PLOT 2 Sample ID 2 :

PLFA Soil Microbial Community Analysis

Functional Group Biomass & Diversity

Total Living Microbial Biomass, Phospholipid Fatty Acid (PLFA) ng/g Functional Group Diversity Index

Total Biomass	Diversity	Rating
< 500	< 1.0	Very Poor
500+ - 1000	1.0+ - 1.1	Poor
1000+ - 1500	1.1+ - 1.2	Slightly Below Average
1500+ - 2500	1.2+ - 1.3	Average
2500+ - 3000	1.3+ - 1.4	Slightly Above Average
3000+ - 3500	1.4+ - 1.5	Good
3500+ - 4000	1.5+ - 1.6	Very Good
> 4000	> 1.6	Excellent

Functional Group	Biomass, PLFA ng/g	% of Total Biomass
Total Bacteria	1363.69	52.07
Gram (+)	930.70	35.54
Actinomycetes	258.61	9.88
Gram (-)	432.99	16.53
Rhizobia	73.17	2.79
Total Fungi	376.86	14.39
Arbuscular Mycorrhizal	82.26	3.14
Saprophytes	294.59	11.25
Protozoa	25.69	0.98
Undifferentiated	852.54	32.55

Reviewed By : Lance Gunderson	7/21/2016	Copy : 1	Page 1 of 4
Bus: 308-234-2418	web site	,	Ave., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		braska 68848-0788

Community Composition Ratios

Fungi:Bacteria

0.2763

Bacteria tend to dominate in systems with fewer organic inputs or residues possibly leading to a lower C:N ratio. In addition, bacteria can be more prominent in the early spring or late fall as soil temperatures are usually cooler and vegetation is less active or absent. Dry conditions, slightly alkaline to alkaline pH values, or increased land disturbance through prolonged and extensive tillage, grazing, or compaction may also favor bacteria. While bacteria are important and needed in the soil ecosystem, fungi are desired and more often considered indicators of good soil health. Increased use of cover crops and/or other organic inputs and less soil disturbance should help the soil support more fungi. Adjustments to pH may also be recommended in some more extreme circumstances.

Predator:Prey

0.0188

This ratio is also expressed as protozoa to bacteria. Protozoa feed on bacteria which helps release nutrients, especially nitrogen. A higher ratio indicates an active community where base level nutrients are sufficient to support higher trophic levels or predators. However, this ratio will always be a relatively low number because the prey will greatly outnumber the predators.

Gram (+):Gram (-)

2.1495

Gram (+) bacteria typically dominate early in the growing season and/or following a fallow period. They also survive better under certain environmental conditions or stressors such as drought or extreme temperatures due to their ability to form spores. Therefore, it is common to see higher values when the community is coming out of dormancy or is stressed. These values will typically begin to approach those of a more balanced bacterial community as the soil conditions become more favorable throughout the growing season. A gram (-) dominated soil may be due to anaerobic conditions or other stressors such as pesticide application or heavy metal contamination.

Scale	Rating
< 0.05	Very Poor
0.05+ - 0.1	Poor
0.1+ - 0.15	Slightly Below Average
0.15+ - 0.2	Average
0.2+ - 0.25	Slightly Above Average
0.25+ - 0.3	Good
0.3+ - 0.35	Very Good
> 0.35	Excellent

Lab No.: 5,663

Scale		Rating	
< 0.002		Very Poor	
0.002+ - 0.00)5	Poor	
0.005+ - 0.00)8	Slightly Below Average	
0.008+ - 0.01	l	Average	
0.01+ - 0.01	13	Slightly Above Average	
0.013+ - 0.01	16	Good	
0.016+ - 0.02	2 Very Good		
> 0.02	Excellent		
Scale	Ratin	g	
< 0.5	Gram (-) Dominated		
0.5+ - 1.0	Slightly Gram (-) Dominated		
1.0+ - 2.0	Balanced Bacterial Community		
2.0+ - 3.0	Slightly Gram(+) Dominated		
3.0+ - 4.0	Gram(+) Dominated		
> 4.0	Very	Gram(+) Dominated	

Stress and Community Activity Ratios

Sat:Unsat	1.9035	Bacteria alter their membranes under various environmental conditions in order to maintain optimal fluidity for nutrient and waste transport into and out of the cell. Saturated fatty acids may reflect a better adapted community to current environmental conditions. Communities under stressed conditions will increase their proportion of unsaturated fatty acids. This will likely occur most often as a result of low soil moisture or drastic changes in temperature. In general, a higher number indicates a healthier and more stable community.
Mono:Poly	5.0665	The ratio of monounsaturated to polyunsaturated fatty acids is used along with the sat:unsat ratio to further indicate the degree of community stress. A higher ratio indicates less stress, while a lower ratio would depict higher levels of prolonged stress due to conditions such as temperature, moisture, pH, or nutrient availability (starvation).
Pre 16:1ω7c:cy17:0	3.7625	Cyclo (cy) fatty acids are more prominent during stationary phases of growth or under high stress conditions
Pre 18:1ω7c:cy19:0	2.8807	that influence membrane fluidity and growth rates such as temperature, pH, moisture, and nutrient availability. In general, a higher number or all Pre16/Pre18 is better and indicates an actively growing community experiencing fewer stressors. These values are typically higher early in the growing season (planting) when the community is becoming active and experiencing fast growth. The values may begin to drop towards the end of the growing season (harvest) following a decrease in plant growth activity or as the community approaches a stationary growth phase as the temperature/moisture changes between the seasons.

All ratios should be looked at separately, but should also be taken into context and compared with one another to better understand the big picture. These are general guidelines and statements regarding soil microbial communities. In addition, the scales and ranges presented here are specific for the type of extraction and analytical methods used for PLFA analysis at Ward Laboratories, Inc. They will not necessarily reflect ranges derived from other methods of analysis or the literature. The scales can and should be adjusted slightly depending on the time of year and conditions at sampling along with the climate and soil type of specific regions where comparisons are being made. Conditions such as time of year, past and present crop, moisture, pH, and fertility should be noted or measured close to sampling for PLFA analysis for a more in depth interpretation of results.

Reviewed By : Lance Gunderson	7/21/2016	Copy:1	Page 2 of 4
Bus: 308-234-2418	web site		/e., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Account No.: 24409

Biological Soil Analysis Report

NEBRASKA MUSHRO 1982 E CITATION WAY GRAND ISLAND		Invoice No Date Received Date Reported	l: 07/19/2016
Results For : NEBRASKA M	USHROOM LLC		
Sample ID 1 : CROPS PLOT	2	Sample ID 3 :	

Sample ID 2 :

Lab No. : 5663

Sample ID 4 :

Haney - Soil Health Analysis

1:1 Soil pH	6.1	ICAP Aluminum, ppm Al	204.20
1:1 Soluble Salts, mmho/cm	0.10	ICAP Iron, ppm Fe	135.2
Excess Lime Rating	1		
Organic Matter, %LOI	5.6	Calculations	
WDRF Buffer pH	6.7	Organic C:Organic N	9.4
		Nitrogen mineralization, ppm N	12.4
Solvita CO2 Burst		Organic Nitrogen Release, ppm I	N 12.4
CO2-C, ppm C	134.0	Organic Nitrogen Reserve, ppm	N 0.0
Water Extract		Phosphorus mineralization, ppm P	
Total Nitrogen, ppm N	14.0	Organic Phosphorus Reserve, pr	om P < 0.1
Organic Nitrogen, ppm N	12.4	Phosphorus Saturation Al/ Fe, %	
Total Organic Carbon, ppm C	116	6 Phosphorus Saturation Ca, %	
H3A Extract		Soil Health	
Nitrate, ppm NO3-N	1.6	Soil Health Calculation	16.72
Ammonium, ppm NH4-N	1.4		
Inorganic Nitrogen, ppm N	3.0	Cover Crop Suggestion	30% Legume 70% Grass
Inorganic (FIA) Phosphorus, ppm P	20.6		
Total (ICAP) Phosphorus, ppm P	30		
Organic Phosphorus, ppm P	9.4		
ICAP Potassium, ppm K	88		
ICAP Calcium, ppm Ca	295		

Haney - Soil Health Analysis Contd.			Lab No. :	5663
Nutrient Quantity Available for Next Crop		Nitrogen Savings by using the Haney Test		
Nitrogen, Ibs N/A	30.8	Traditional evaluation, lbs N/A		3.2
Phosphorus, Ibs P2O5/A	97.6	Haney Test N evaluation, lbs N/A		30.8
Potassium, lbs K2O/A	105.7	Nitrogen Difference, lbs N/A		27.6
Nutrient Value, \$/A	110.60	N savings, \$/A		17.64

Сгор	Yield Goal	Nitrogen N	Phosphorus P2O5	Potassium K2O	Lime, ECC T/A
					1.2

Reviewed By :	Lance Gunderson
---------------	-----------------

Bus: 308-234-2418 Fax: 308-234-1940 7/21/2016

Copy : 1

Account No.: 24409

Biological Soil Analysis Report

NEBRASKA MUSHRO	OM LLC	Invoice No. :	1212203
1982 E CITATION WAY	<i>l</i>	Date Received :	07/19/2016
GRAND ISLAND	NE 68801	Date Reported :	07/21/2016
		Lab No. :	5664

Results For : NEBRASKA MUSHROOM LLC Sample ID 1 : CROPS CONTROL Sample ID 2 :

PLFA Soil Microbial Community Analysis

	Total Biomass	Diversity	Rating	
	< 500	< 1.0	Very Poor	
	500+ - 1000	1.0+ - 1.1	Poor	
	1000+ - 1500	1.1+ - 1.2	Slightly Below Average	
	1500+ - 2500	1.2+ - 1.3	Average	
	2500+ - 3000	1.3+ - 1.4	Slightly Above Average	
	3000+ - 3500	1.4+ - 1.5	Good	
	3500+ - 4000	1.5+ - 1.6	Very Good	
	> 4000	> 1.6	Excellent	
Functional Group	_		Biomass, PLFA ng/g	% of Total Biomass
Total Bacteria			1094.26	50.25
Gram (+)			861.37	39.55
Actinomycetes			231.04	10.61
Gram (-)			232.90	10.69
Rhizobia			0.00	0.00
Total Fungi			139.04	6.38
Arbuscular Mycorrhizal			52.32	2.40
Saprophytes			86.72	3.98
Protozoa			16.40	0.75
Undifferentiated			928.06	42.62

Reviewed By : Lance Gunderson	7/21/2016	Сору : 1	Page 1 of 4
Bus: 308-234-2418	web site		/e., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Community Composition Ratios

Fungi:Bacteria

0.1271

Bacteria tend to dominate in systems with fewer organic inputs or residues possibly leading to a lower C:N ratio. In addition, bacteria can be more prominent in the early spring or late fall as soil temperatures are usually cooler and vegetation is less active or absent. Dry conditions, slightly alkaline to alkaline pH values, or increased land disturbance through prolonged and extensive tillage, grazing, or compaction may also favor bacteria. While bacteria are important and needed in the soil ecosystem, fungi are desired and more often considered indicators of good soil health. Increased use of cover crops and/or other organic inputs and less soil disturbance should help the soil support more fungi. Adjustments to pH may also be recommended in some more extreme circumstances.

Predator:Prey

0.0150

This ratio is also expressed as protozoa to bacteria. Protozoa feed on bacteria which helps release nutrients, especially nitrogen. A higher ratio indicates an active community where base level nutrients are sufficient to support higher trophic levels or predators. However, this ratio will always be a relatively low number because the prey will greatly outnumber the predators.

Gram (+):Gram (-)

3.6985

Gram (+) bacteria typically dominate early in the growing season and/or following a fallow period. They also survive better under certain environmental conditions or stressors such as drought or extreme temperatures due to their ability to form spores. Therefore, it is common to see higher values when the community is coming out of dormancy or is stressed. These values will typically begin to approach those of a more balanced bacterial community as the soil conditions become more favorable throughout the growing season. A gram (-) dominated soil may be due to anaerobic conditions or other stressors such as pesticide application or heavy metal contamination.

Rating
Very Poor
Poor
Slightly Below Average
Average
Slightly Above Average
Good
Very Good
Excellent

Scale	Rating	
< 0.002	Very Poor	
0.002+ - 0.005	i Poor	
0.005+ - 0.008	Slightly Below Average	
0.008+ - 0.01	Average	
0.01+ - 0.013	Slightly Above Average	
0.013+ - 0.016	Good Good	
0.016+ - 0.02	Very Good	
> 0.02	Excellent	
Scale F	Rating	
< 0.5	Gram (-) Dominated	
0.5+ - 1.0 \$	Slightly Gram (-) Dominated	
1.0+ - 2.0 E	Balanced Bacterial Community	
2.0+ - 3.0 8	Slightly Gram(+) Dominated	
3.0+ - 4.0 0	Gram(+) Dominated	
> 4.0	/ery Gram(+) Dominated	

Stress and Community Activity Ratios

Sat:Unsat	2.5667	Bacteria alter their membranes under various environmental conditions in order to maintain optimal fluidity for nutrient and waste transport into and out of the cell. Saturated fatty acids may reflect a better adapted community to current environmental conditions. Communities under stressed conditions will increase their proportion of unsaturated fatty acids. This will likely occur most often as a result of low soil moisture or drastic changes in temperature. In general, a higher number indicates a healthier and more stable community.
Mono:Poly	15.3712	The ratio of monounsaturated to polyunsaturated fatty acids is used along with the sat:unsat ratio to further indicate the degree of community stress. A higher ratio indicates less stress, while a lower ratio would depict higher levels of prolonged stress due to conditions such as temperature, moisture, pH, or nutrient availability (starvation).
Pre 16:1ω7c:cy17:0	NONE FOUND	Cyclo (cy) fatty acids are more prominent during stationary phases of growth or under high stress conditions
Pre 18:1ω7c:cy19:0	25.3527	that influence membrane fluidity and growth rates such as temperature, pH, moisture, and nutrient availability. In general, a higher number or all Pre16/Pre18 is better and indicates an actively growing community experiencing fewer stressors. These values are typically higher early in the growing season (planting) when the community is becoming active and experiencing fast growth. The values may begin to drop towards the end of the growing season (harvest) following a decrease in plant growth activity or as the community approaches a stationary growth phase as the temperature/moisture changes between the seasons.

All ratios should be looked at separately, but should also be taken into context and compared with one another to better understand the big picture. These are general guidelines and statements regarding soil microbial communities. In addition, the scales and ranges presented here are specific for the type of extraction and analytical methods used for PLFA analysis at Ward Laboratories, Inc. They will not necessarily reflect ranges derived from other methods of analysis or the literature. The scales can and should be adjusted slightly depending on the time of year and conditions at sampling along with the climate and soil type of specific regions where comparisons are being made. Conditions such as time of year, past and present crop, moisture, pH, and fertility should be noted or measured close to sampling for PLFA analysis for a more in depth interpretation of results.

Reviewed By : Lance Gunderson	7/21/2016	Copy:1	Page 2 of 4
Bus: 308-234-2418	web site		ve., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Lab No.: 5,664

Account No.: 24409

Biological Soil Analysis Report

NEBRASKA MUSHROO 1982 E CITATION WAY GRAND ISLAND		Invoice No Date Received Date Reported	I: 07/19/2016
Results For : NEBRASKA M	USHROOM LLC		
Sample ID 1 : CROPS CONT	ROL	Sample ID 3 :	
Sample ID 2 :		Sample ID 4 :	

Lab No.: 5664

Sample ID 4 :

Haney - Soil Health Analysis							
1:1 Soil pH	6.2	ICAP Aluminum, ppm Al	175.90				
1:1 Soluble Salts, mmho/cm	0.12	ICAP Iron, ppm Fe	116.3				
Excess Lime Rating	1						
Organic Matter, %LOI	4.8	Calculations					
WDRF Buffer pH	6.6	9.4					
		Nitrogen mineralization, ppm N	N 10.6				
Solvita CO2 Burst		Organic Nitrogen Release, ppr	n N 10.6				
CO2-C, ppm C	141.0	Organic Nitrogen Reserve, ppr	m N 0.0				
Water Extract		Phosphorus mineralization, pp	m P 8.0				
Total Nitrogen, ppm N	12.4	Organic Phosphorus Reserve,	ppm P < 0.1				
Organic Nitrogen, ppm N	10.6	Phosphorus Saturation Al/ Fe,	% 5.5				
Total Organic Carbon, ppm C	100	Phosphorus Saturation Ca, %	4.5				
H3A Extract		Soil Health					
Nitrate, ppm NO3-N	1.7	Soil Health Calculation	17.04				
Ammonium, ppm NH4-N	1.6	Cover Crop Suggestion	30% Legume 70% Grass				
Inorganic Nitrogen, ppm N	3.3						
Inorganic (FIA) Phosphorus, ppm P	8.0						
Total (ICAP) Phosphorus, ppm P	16						
Organic Phosphorus, ppm P	8.0						
ICAP Potassium, ppm K	61						
ICAP Calcium, ppm Ca	356						

Copy:1

Page 3 of 4

Haney - Soil Health Analysis Contd.					
Nutrient Quantity Available for Next Crop		t			
Nitrogen, Ibs N/A	27.8	Traditional evaluation, lbs N/A	3.4		
Phosphorus, Ibs P2O5/A	70.9	Haney Test N evaluation, lbs N/A	27.8		
Potassium, lbs K2O/A	73.7	Nitrogen Difference, Ibs N/A	24.4		
Nutrient Value, \$/A	82.30	N savings, \$/A	15.61		

Сгор	Yield Goal	Nitrogen N	Phosphorus P2O5	Potassium K2O	Lime, ECC T/A
					1.6

7/21/2016

Copy : 1