

SQUASH BUG: Anasa tristis (DeGeer)

Effects of Selective Hemipteran-Targeting Insecticides and One Broad-Spectrum Insecticide on Squash Bug, 2018

Sean Boyle, 1,0 Thomas P. Kuhar, 1,3,0 and Donald C. Weber²

¹Virginia Tech Department of Entomology, 170 Drillfield Drive, Price Hall Rm 216A, Blacksburg, VA 24060, USA, ²USDA Agricultural Research Service, Invasive Insect Biocontrol & Behavior Laboratory, Bldg. 007 Room 324, BARC-West, Beltsville, MD 20705, USA, and ³Corresponding author, e-mail: tkuhar@vt.edu

Section Editor: Michelle Brown

Yellow squash fruit | Cucurbita pepo

Squash bug | Anasa tristis (DeGeer)

Squash bug, *Anasa tristis* (DeGeer) (Hemiptera: Coreidae), is an important pest of cucurbit crops in the United States. Bioassay experiments were conducted to evaluate the mortality caused by several selective (reduced risk) and broad-spectrum insecticides on squash bug nymphs. Treatments included Lambda-cy, Harvanta 50SL, Transform WG, Sivanto HL 400SL, Sivanto Prime 200SL, PQZ, Beleaf 50SL, Sefina, Assail 30SG, and a water-only check (Table 1). Squash bug nymphs (4th–5th instars) were collected from field plots of summer squash (*Cucurbita pepo*) at Virginia Tech's Kentland Research Farm in Whitethorne, VA in Aug 2018. Fresh cut discs (8–10 cm diameter) of summer squash fruit were dipped in insecticide solution for 5 s, then placed into 150 × 15 mm Petri

dishes along with 10 nymphs per dish. Nymphal mortality was recorded at 24, 48, and 72 h after treatment. Four repetitions were conducted for each insecticide treatment. Proportion mortality data were arcsine-square root transformed to normalize variances, then analyzed using a one-way ANOVA followed by Fisher's protected LSD to separate means.

There was a significant effect of treatment on mortality of squash bug nymphs at 24, 48, and 72 h. At each time interval, Assail and Lambda-cy had the highest mortality followed by Transform, then Sivanto HL 400SL. The aforementioned four treatments were the only insecticides to result in effective (>80%) mortality by 72 h.¹

Table 1.

		1	Mortality (%)		
Treatment	Rate/acre	24 h	48 h	72 h	
Assail 30SG	6.0 ^b	72.5a	82.5a	100.0a	
Lambda-cy	16.4ª	67.5a	80.0a	97.5a	
Transform WG	1.0 ^b	22.5bc	60.0ab	95.0a	
Sivanto HL 400SL	7.0ª	27.5b	50.0bc	87.5ab	
Harvanta 50SL	10.9	22.5bc	25.0cde	67.5bc	
Beleaf	2.4 ^b	10.0bcd	35.0bcd	57.5cd	
Sivanto Prime 200SL	14.0ª	2.5cd	37.5bcd	50.0cd	
PQZ	3.2ª	12.5bcd	17.5de	32.5de	
Sefina	14.0ª	12.5bcd	12.5de	20.0ef	
Water	_	0.0d	0.0e	5.0f	

Data within columns followed by a letter in common are not significantly different; P < 0.05.

'This research was supported in part by industry gifts of insecticides. Additional funding was provided by 2020 USDA Southern SARE Research & Education Grant 604157 'Development and evaluation of IPM systems components for insect pests and pathogens of cucurbit crops in the southeastern United States'.

^afl oz of product per acre.

boz of product per acre.