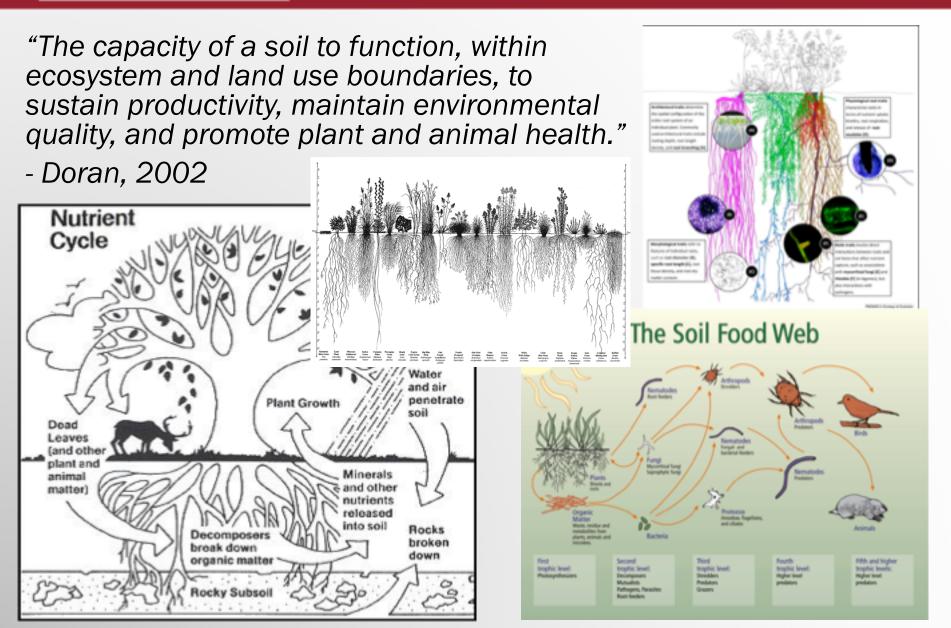
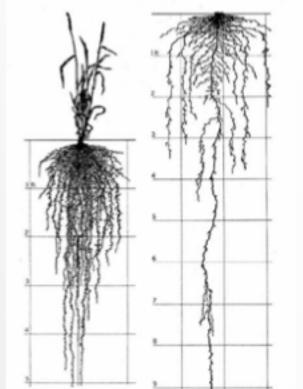
MANAGING SOIL HEALTH AND CROP DISEASES WITH BRASSICA COVER CROPS

Justin O'Dea Regional Agriculture Specialist, ANR Extension Program Unit, SW WA


Soil health

"The capacity of a soil to function, within ecosystem and land use boundaries, to sustain productivity, maintain environmental quality, and promote plant and animal health." – Doran 2002

- □ Good soil tilth
- Sufficient depth
- Sufficient but not excess nutrients
- Small population of plant pathogens and insect pests
- Good soil drainage
- □ Large population of beneficial organisms
- □ Low weed pressure
- □ Free of chemicals and toxins that may harm the crop
- Resistant to degradation
- Resilience when unfavorable conditions occur


Restoring services, function

Understanding choices:

- Different root morphologies, architectures
- Different aboveground growth habits
- Different biomass qualities
- Different services
 - Balancing nutrient and nonnutrient services desired
 - Balancing species, management

Making good cover crop choices

- Identify services you want from a cover crop
- Identify cover crops that perform those services
- Understand how those cover crops affect nutrients
- Understand how to manage those cover crops for targeted services

Understanding cover crop services

Non-nutrient services

- Soil stabilization
- Water management (use excess, reduce damage)
- "Bio-tillage"
- Mulching
- Weed suppression
- Soil-borne disease control
- Pollinator attraction/refugia
- Improved tilth
- SOM building
 - Multiple improvements in soil resilience

Understanding cover crop services

Nutrient services Catch cropping Nutrient scavenging Nitrogen-fixation Improved nutrient cycling General increases in soil fertility Moderated pH

Understanding cover crop nutrient cycling services:

- □ N-fixers
 - Add N to soils, the only renewable nutrient
- Catch crops
 - **D** Catch, recover volatile soil nutrients, convert into organic forms
 - Mostly N, S, B
 - Moderate loss; improve cycling, efficiency
- Nutrient scavengers
 - Scavenge soil solution for available static nutrients (P, cations), convert into organic forms
 - Incite nutrient release from minerals
 - Increase availability, cycling, of static nutrients
- Soil builders
 - Excel at building soil C (microbial substrate, humus)
 - Improved nutrient cycling via microbial activity (sugars, carbohydrates etc.) and nutrient exchange capacity (humus)
 - Moderate pH via increased buffering, cation exchange capacity (humus)

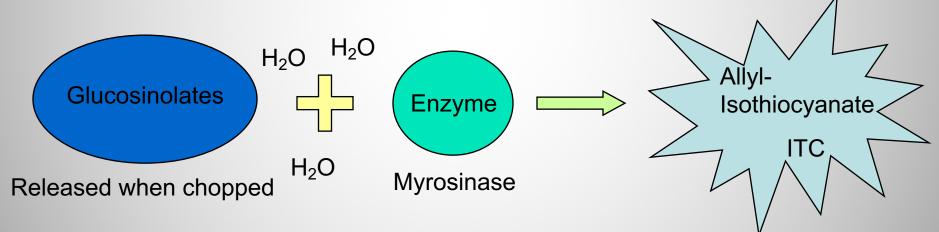
Brassica cover crops and soil health

"The capacity of a soil to function, within ecosystem and land use boundaries, to sustain productivity, maintain environmental quality, and promote plant and animal health."

- Good soil tilth*
- Sufficient depth*
- Sufficient but not excess nutrients*
- Small population of plant pathogens and insect pests **
- Good soil drainage*
- Large population of beneficial organisms*
- Low weed pressure*
- □ Free of chemicals and toxins that may harm the crop
- Resistant to degradation*
- Resilience when unfavorable conditions occur*

What is Biofumigation?

 "The suppression of various soil-borne pests and pathogens by naturally occurring compounds"
 Brassicas: esp. mustards, arugula



How does it work?

Brassicas naturally produce glucosinolates

- Sulfur compound that makes certain brassicas "hot/spicy"
- Essential component for biofumigation

 Broad-spectrum fumigant
 Need 10-60x typical biomass to equal Vapam application concentration
 Similar to active ingredient in Vapam (methyl-isothiocyanate)

Big hopes for Biofumigation

- Soil-borne disease suppression
 - Fusarium, Verticillium, Rhizoctonia, Pythium, Sclerotinia, Botrytis, Phytophthora, +
- Nematode suppression
 - Root knot and root lesion nematode
 - Potato cyst nematode suppression being studied
- Weed seed germination suppression

Big hopes for Biofumigation

CONTROL OF SOIL-BO	RNE
PLANT PESTS USING	3
Glucosinolate-Conta	INING
PLANTS	Plant

and Soil 162: 107-112, 1994. © 1994 Kluwer Academic Publishers. Printed in the Netherlands.

Paul D. Brown and Matthew J. Morra

Department of Plant, Soil, and Entomological Sciences University of Idaho Moscow, Idaho 83844-2339

Biofumigation: Isothiocyanates released from *Brassica* roots inhibit growth of the take-all fungus

J.F. Angus¹, P.A. Gardner¹, J.A. Kirkegaard¹ and J.M. Desmarchelier² ¹CSIRO Division of Plant Industry, GPO Box 1600, Canberra, 2601, Australia and ²CSIRO Division of Entomology, GPO Box 1700, Canberra, 2601, Australia

Key Laboratory of Plant Pathology of the Ministry of Education, Yunnan Agricultural University, Kumming, China

Potential Biofumigation Effects of *Brassica oleracea* var. *caulorapa* on Growth of Fungi

C. M. FAN¹, G. R. XIONG¹, P. QI¹, G. H. JI¹ and Y. Q. HE^{1,2}

Authors' addresses: 'Key Laboratory of Plant Pathology of the Ministry of Education, Yunnan Agricultural University, Kunning 650201, China; ²Faculty of Agronomics and Biotechnology Vunnan Agricultural University Kunning 650201 Plant and Soil 201: 103–112, 1998. © 1998 Kluwer Academic Publishers. Printed in the Netherlands. China (correspondence to Y. Q. He. E-mail: heyu

103

Biofumigation potential of brassicas

III. In vitro toxicity of isothiocvanates to soil-borne fungal pathogens

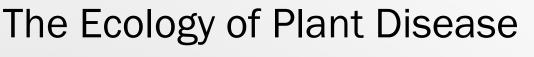
M. Sarwar¹, J.A. Kirkegaard¹, P.T.W. Wong² and J.M. Desmarchelier³ ¹CSIRO Plant Industry, GPO Box 1600 Canberra ACT 2601, Australia*, ²Agricultural Research Institute, NSW Agriculture, Wagga Wagga NSW 2650, Australia and ³CSIRO Division of Entomology, GPO Box 1700, Canberra 2601. Australia

Applied results variable...

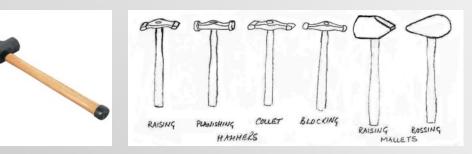
Mustard Green Manures Replace Fumigant and Improve Infiltration in Potato Cropping System

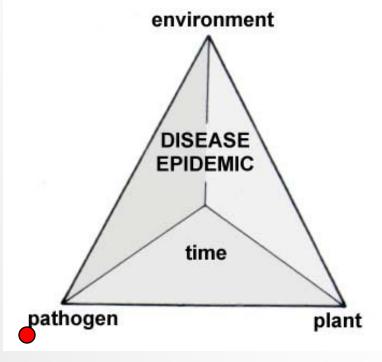
Andrew M. McGuire, Lauzier Agricultural Systems Educator, Washington State University Cooperative Extension, Grant-Adams Area, PO Box 37, Ephrata WA Control of soilborne potato diseases using *Brassica* green manures

Robert P. Larkin*, Timothy S. Griffin


USDA, ARS, New England Plant, Soil, and Water Laboratory, University of Maine, Orono, ME 04469, USA

Call and an descent a with Descent a second second for	
Soil amendments with <i>Brassica</i> cover crops for	Brassica Green Manure Amendments
management of Phytophthora blight on squash	for Management of <i>Rhizoctonia solani</i>
Pingsheng Ji, ^a * Daouda Koné, ^{a,b} Jingfang Yin, ^a Kimberly L Jackson ^a and Alexander S Csinos ^a	in Two Annual Ornamental Crops
	in the Field
Mustard biofumigation disrupts biological control by <i>Steinernema</i> spp. nematodes in the soil	Department of Plant Pathology, University of Arkansas, 217 Plant Science
Donna R. Henderson ^{a,b} , Ekaterini Riga ^{a,b} , Ricardo A. Ramirez ^c , John Wilson ^{a,b} , William E. Snyder ^{c,*}	Building, 495 North Campus Drive, Fayetteville, AR 72701
Pathogenicity of Phytophthora capsici to Brassica Vegetable Crops and	HorrScience 40(7):2016-2019. 2005.
	Mustard Cover Crops Are Ineffective
• • • • • • • • • • • • • • • • • • • •	in Suppressing Soilborne Disease or
Mustard and Other Cover Crop Effects Vary on Lettuce Drop	Improving Processing Tomato Yield
Caused by Sclerotinia minor and on Weeds	T.K. Hartz, P.R. Johnstone, E.M. Miyao, ¹ and R.M. Davis ² Department of Plant Sciences, University of California, Davis, CA 95616
Tiffany A. Bensen and Richard F. Smith. University of California Cooperative Ex	stension. Monterey County.


Tiffany A. Bensen and Richard F. Smith, University of California Cooperative Extension, Monterey County, Salinas 93901; Krishna V. Subbarao, University of California, Department of Plant Pathology, Davis 95616; Steven T. Koike, University of California Cooperative Extension; and Steven A. Fennimore and Shachar Shem-Tov, University of California, Department of Plant Sciences, Davis 95616



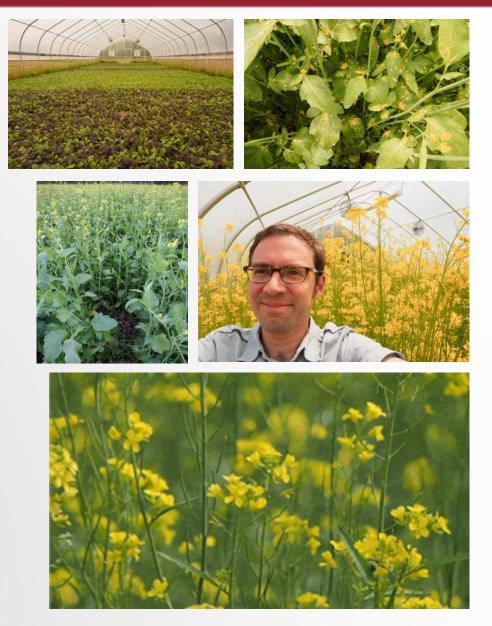
Integrated management

- "The Disease Pyramid":
 - 4 Critical components
 - Manage any one, 🚽
 - Know how to manage
 - Strategize

- Products are a helpful, powerful intervention tool
- BUT...Integrated approaches are most effective!

Brassica cover crops

- All cool-season crops
 Shoulder season timing
 Spring or fall planting
 Daikon radish
 "Tillage radish[®]"
- Oilseed radish
- Forage radish
- 🗆 Turnip
- Mustards
- Arugula
- Rapeseed/canola



Brassica cover crop characteristics:

- Weed suppression
 Quick canopy closure
 Quick vertical growth rate
- Can return abundant C to soils-
 - 50-60d growth =
 - ~2000-2500 lbs/ac C (~4500-7200 lbs. total biomass)
- Attracts beneficials


Brassica cover crop characteristics:

Diving taproot system Infiltration improvement potential

High catch crop potential

Reach deeper soil layers quickly

- Soluble nutrient recovery
 - Non-mycrorrhizal

Brassica cover crop characteristics

- Catch up to ~200 lbs ac N, depends on residual levels
 - Measured ~130-180 lbs/ac in mustards – will catch more than is applied
 - Highly responsive to N levels
 - Need starter N to get going though (esp. spring)
- Catch other nutrients, water from deeper layers and return to surface
 S recovery has been noted
- May be useful to soils with histories of intensive tillage
 - Compromised mycorrhizal community
 - Compaction

Table 2. Dry matter production (total and root), total N content in the catch crops and soil nitrate-N residues in the top 1.0 m of the soil in November, average 2 years (figures in brackets are SE, n=2)

	Total DM	Root DM	N content	Soil nitrate-N
	Mg ha ⁻¹		kg N ha ⁻¹	
F. radish	5.6 ^(0.4)	0.9 ^(0.4)	160 ⁽⁶⁾	15(5)
Winter rape	5.4(0.7)	1.4(0.0)	148(2)	9(2)
Phacelia	4.7 ^(0.8)	0.5 ^(0.2)	102(4)	26(7)
Rye	3.1 ^(0.4)	1.0 ^(0.0)	91 ⁽⁴⁾	24(12)
Oats	3.8(0.6)	0.7 ^(0.1)	88(19)	31(5)
Italian ryegrass	5.4(0.1)	1.9 ^(0.3)	123(13)	24(6)
Rye/vetch mix.	4.7(1.2)	1.4 ^(0.4)	143(27)	29 ⁽⁹⁾
Hairy vetch	4.3(1.7)	0.6 ^(0.1)	153(33)	51(18)
– no catch crop –	-	-	-	129(31)
Malva sylvestris ^a	5.6	2.0	105	11
Agrostemma githago ^a	6.3	1.0	132	18

^aOnly included in 1 year.

Table 3. Root intensity calculated for the whole depth of the minirhizotrons at four dates shown as number of weeks after sowing and approximate number of day $^{\circ}$ C after sowing, average 2 years (figures in brackets are SE, n=2)

	Ro	ot intensity (intersec. m ⁻	¹ line on the minirhizotr	ons)
	3 weeks	4 weeks	6 weeks	12 weeks
	360 d °C	520 d °C	760 d °C	1320 d °C
F. radish	2.8(1.1)	11.5(0.8)	90(10)	138(4)
Rape	1.3(0.7)	4.8(0.3)	48(14)	108(13)
Phacelia	1.3(0.1)	8.2(1.4)	87(17)	160(29)
Rye	4.1(1.7)	6.9(2.1)	17(3)	35(2)
Oats	2.7(0.6)	5.1(0.1)	18(6)	34(3)
Ryegrass	1.3(1.1)	2.1(1.7)	10(4)	82(3)
Rye/vetch mixt.	2.7(0.1)	5.5(1.2)	16(7)	42(5)
Vetch	1.3(1.0)	2.3(1.2)	6(1)	18(2)
Malva ^a	0.4	2.1	19	58
Agrostemma ^a	0.3	0.6	13	65

^aOnly included in 1 year.

Table 4. Regression parameters of rooting depth against temperature sum. The lag time is the estimated temperature sum until a rooting depth of 0.1 m is reached. Estimated temperature sum until a rooting depth of 1.0 m is obtained is shown for each crop.

	Lag time d °C	Depth penetration rate $mm d^{-1} \circ C^{-1}$	<i>R</i> ²	Depth after 1000 d °C M	Time to 1.0 m d °C
F. radish	301	2.0	0.99	1.5	751
Winter rape	397	2.3	0.94	1.5	789
Phacelia	377	1.7	0.99	1.2	908
Rye	222	1.2	0.97	1.0	1001
Oats	200	1.0	0.95	0.9	1134
Ryegrass	532	1.1	0.95	0.6	1375
Rye/vetch mixt.	250	1.1	0.99	0.9	1086
Vetch	342	0.9	0.96	0.7	1356
Malva ^a	431	1.7	0.95	1.1	960
Agrostemma ^a	572	1.5	0.98	0.7	1172

^aOnly included in 1 year.

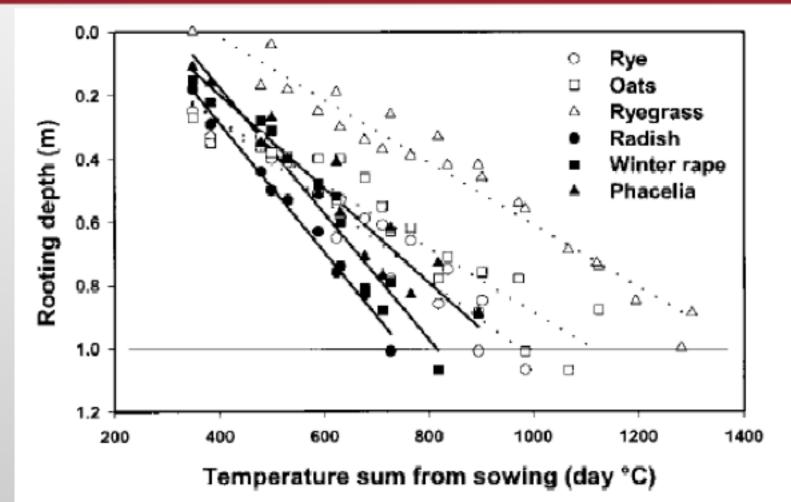


Figure 3. Depth penetration by catch crop roots during the autumn, data from each of the 2 years are shown. The statistics of the regressions are shown in Table 4. Thorup-Kristensen, 2001

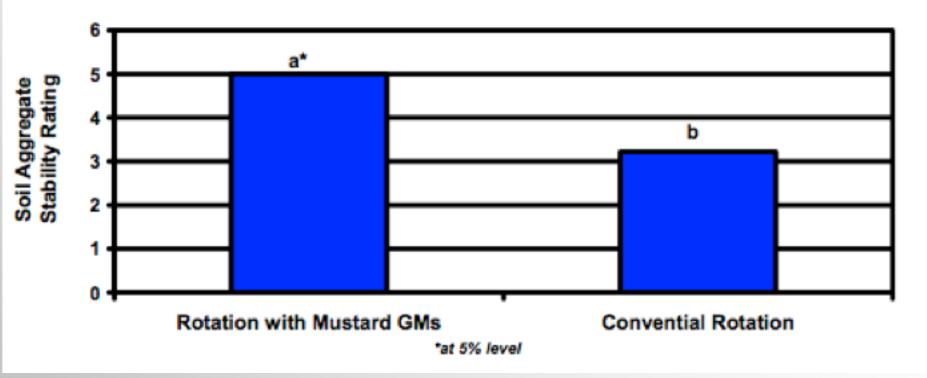
Mustard Green Manures Replace Fumigant and Improve Infiltration in Potato Cropping System

Andrew M. McGuire, Lauzier Agriculture Washington State University Cooperative Area, PO Box 37, Ephrata WA 98823

Average Infiltration Rates, after consecutive 1" applications of ponded water

Rotation with mustard green manures

Rotation without green manures


	Average	Infiltration	n Rates
Date and Point in rotation	1st inch	2nd inch	3rd inch
		in/min	
September 3, 1999			
After wheat harvest	1.39a	0.48a	
After wheat harvest	0.13b	0.18b	
November 2, 2000			
After potato harvest	0.20b	0.19a	0.16
After sugarbeet harvest	0.39a	0.05b	
March 7, 2001			
Potatoes/winter	0.57a	0.10a	
Sugarbeets/winter	0.06b	0.05b	
March 5, 2002			
Potatoes/winter	0.14	0.09a	0.08
Fallow/winter	0.10	0.05b	

Mustard Green Manures Replace Fumigant and Improve Infiltration in Potato Cropping System

Andrew M. McGuire, Lauzier Agricultural Systems Educator, Washington State University Cooperative Extension, Grant-Adams Area, PO Box 37, Ephrata WA 98823

Aggregate Stability Rating (slake method) Spring 2002

Considerations

- Species/variety with high glucosinolate content
 - Fungal pathogen-oriented
 - 'Caliente' varieties (B. juncea)*
 - Pacific Gold' (*B. juncea*)Nematode-oriented
 - 'Nemat' arugula (Eruca sativaoverwintering)
 - 'Ida Gold' (Sinapsis alba)
 Other:
 - Rapeseed, Canola (B. rapa/napus)
 - Pennycress (Thlaspi arvense)

Screening Brassica species for glucosinolate content

GEORGE F. ANTONIOUS¹, MICHAEL BOMFORD¹ and PAUL VINCELLI²

¹Department of Plant and Soil Science, Land Grant Program, Atwood Research Center, Kentucky State University, Frankfort, Kentucky, USA
²Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA

> Glucosinolate and isothiocyanate concentration in soil following incorporation of *Brassica* biofumigants

> > A.L. Gimsing^{a,b,*}, J.A. Kirkegaard^a

*CSIRO Plant Industry, GPO Box 1681; Canherra ACT 2001, Autoralia Department of Natural Sciences, The Royal Veterinary and Apricalized University, Thursaldonaus; 40, DK-1871 Prederiksberg C, Donnark

> Received 31 October 2005; resulted in messed form 17 January 2006; accepted 24 January 2006 Available online 27 March 2006

BIOFUMIGANT COMPOUNDS RELEASED BY FIELD PENNYCRESS (Thlaspi arvense) SEEDMEAL¹

STEVEN F. VAUGHN,* TERRY A. ISBELL, DAVID WEISLEDER, and MARK A. BERHOW

New Crops and Processing Technology Research USDA, ARS, National Center for Agricultural Utilization Research 1815 N. University St., Peoria, Illinois 61604, USA

Considerations

DIFFERENCE A CASH CROP

- Crop rotation
 - Sequence before soil-borne diseasesensitive cash crops
 - Sequence gaps, physical distance from brassica cash crops
 - Past herbicide?
- Season timing (~50-60d growth)
 - Spring (April June)
 - Late summer (Aug Oct)*
 - Winter (Sept early Spring)

- Seedbed preparation
 - Conditioning for small seeded crop
 - Weed-free
 - Pre-plant fertility
 - Soil test recommended P, K, micros for mustard
 - Starter N (~20 lbs mimimum, esp. in spring!!)
 - S (~20 lbs or ~6:1 N:S ratio; gypsum will not lower pH)
 - Your biofumigation can only be as good as your fertility

Growing for biofumigation □ Seeding Use drill (rec'd) or broadcast **\square**Seed depth: $\frac{1}{4}$ to $\frac{1}{2}$ " ■ Mustards: 10-12 lbs/ac Arugula: 6-8 lbs/ac Late seedings, shortened season, dry, broadcast > can increase rate □ Small seeded- assure adequate moisture

- Management
 - Topdress N (usually needed)
 - 50-100 lbs/ac total applied N is optimal, some go as high as 150
 - Depends on crop history, inherent fertility
 - You will get back more N in biomass than you applied

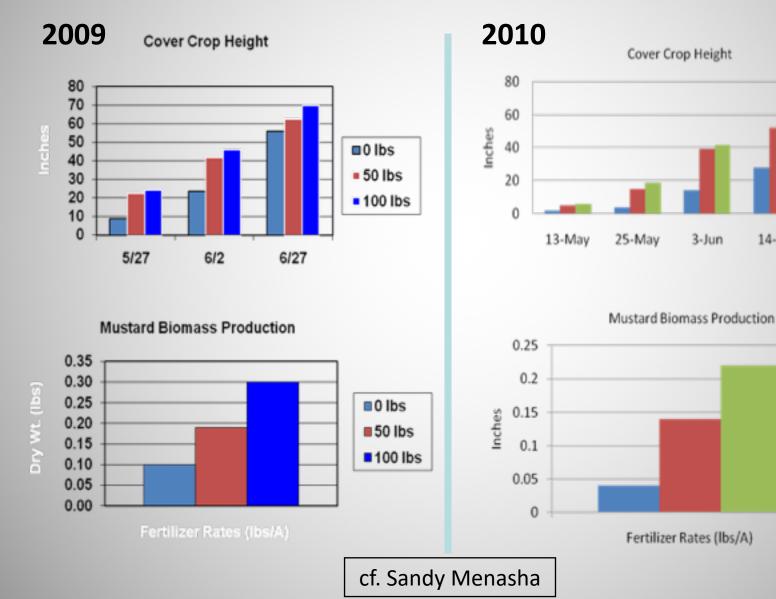
■ C:N = ~14:1

Irrigate if droughty

Nitrogen Fertility and Biomass Production

0 lbs

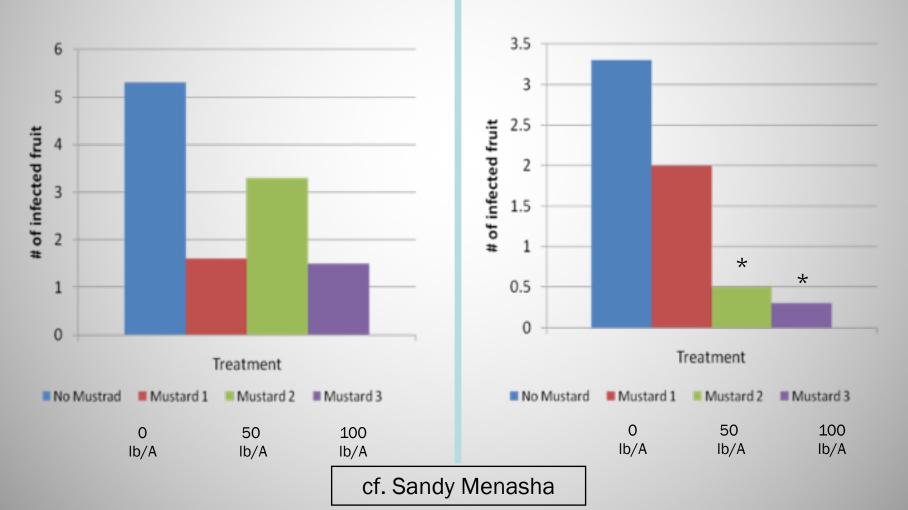
50 lbs


100 lbs

0 lbs

50 lbs

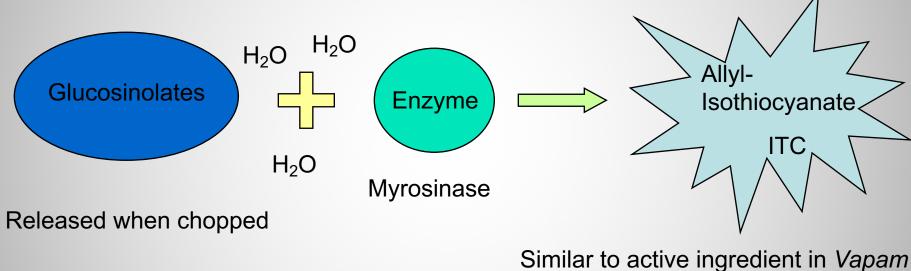
100 lbs


14-Jun

Phytophthora Fruit Rot Incidence

2010

- What to Expect:
 - Begins flowering after ≥30 d usually ~2½-3'
 - Let it flower away!
 - Viable seed 6 weeks from flower
 - Doubles in height after flowering
 - Grows up to ~5+ ft
 - Incorporate 2-4 weeks after flower
 - Biofumigation potential drops after maturity
 - Mustard weed seed after maturity
 - Glucosinolate content to seed



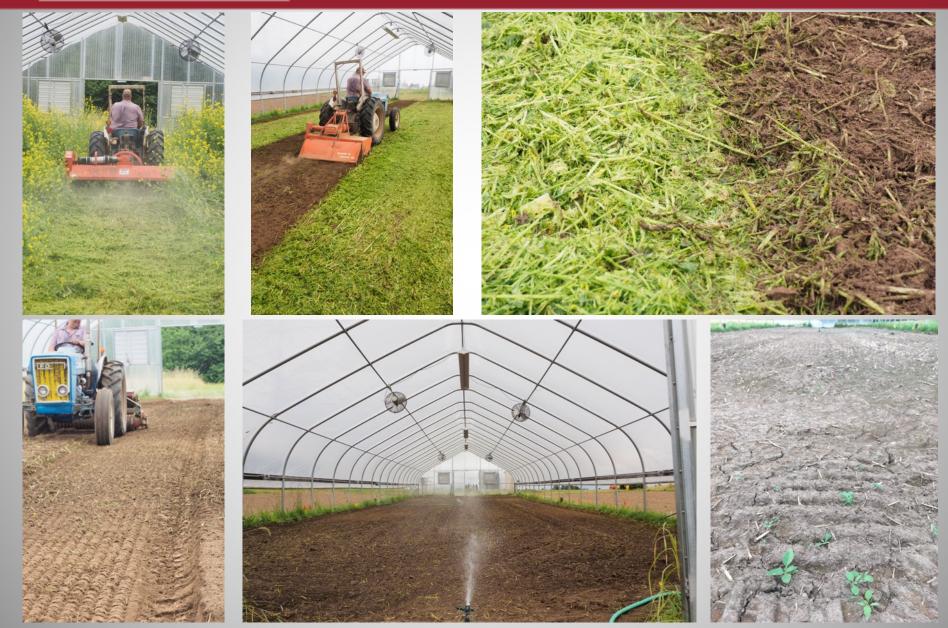
Facilitate Biofumigation reaction in the field

Similar to active ingredient in *Vapam* (methyl-isothiocyanate)

In sequence:

- Chop > incorporate > seal > (irrigate?)
- ITC is volatile (gaseous): Activity time is limited!

Biofumigation


Equipment

- Mower (flail is rec'd)
 - Ruptures brassica cells, releases glucosinolates, myrosinase

Tillage implement (rototiller rec'd)

- Increases biofumigant contact with soil borne pathogens
- Packing implement (cultipacker rec'd)
 Seals in ITC biofumigant gas
- Irrigation lines if droughty
 - Assures conversion of glucosinolates to ITCs
 - Assures start of 7-14 day biofumigation period
 - Helps seal soil surface to retain ITC gas

Biofumigation

- ~10 day biofumigation recommended
- Should inhibit weed seed germination by default
- SO- do not plant crops in biofumigating soils also- poor germ risk!
- Light tillage after biofumigation period will help assure release of any remaining gases
- Heavier soils may hold in gas more?
 Also may not biofumigate as thouroughly?

Biofumigation take Home Points

- Mindset: Treat it like a crop!
- Use varieties selected for biofumigation
- Good seedbed prep, weed control
- Ample fertility, moisture
- Seed timely for 50-60 days growth
- Follow biofumigation steps
- Consider issues w/brassica diseases, residual herbicides
- View biofumigation as one tool of many
- Consider other benefits of cover crop
 N catch cropping, & fertility improvement
 SOM building, infiltration, soil-quality improvement

WASHINGTON STATE UNIVERSITY EXTENSION

Avoiding brassicas?

Disease contamination

- Black leg (seed-borne, persistent)
- Black rot (seed-borne, persistent)
- Clubroot (soil-borne, tenacious)
- Alternate hosting
 - Ex: Sclerotinia (generalist)
 - > Use Certified Seed
 - > Sanitation practices
- Brassica seed production regions
- Pollen contamination
- Disease quarantines
 - > Seed pinning maps
 - > Extension contacts

Pests

- Flea beetle
 - > Separate from cash crop plantings

Production of Brassica Seed Crops in Washington State: A Case Study on the Complexities of Coexistence

ASHINGTON STATE UNIVERSITY EXTENSION . EM0621

	CSANR Center for Sustaining Agriculture and Natural Resources							Search	۹
UNIVERSITY	HOME	ABOUT	BLOG	PUBLICATIONS	GRANTS	PROGRAM AREAS	EDUCATION	NEWS & EVENTS	GIVE
ρ ε ≺									

Mustard Green Manures

Mustard green manures are being used in irrigated regions of eastern Washington to improve soil quality, control wind erosion, and manage soil-borne pests. Green manures improve soil quality by increasing soil organic matter and also by stimulating the growth of microorganisms. These microorganisms secrete compounds that bind soil particles together into aggregates. With improved soil aggregation comes improved water infitration, aeration, and resistance to wind erosion. In addition, although all the mechanisms are not well understood, there are several ways that green manures can control soil-borne pests. They can be divided up into three categories: crop rotation, changes in soil biology (including competitive exclusion, increased predation, and interference of crop-pathogen signals), and altelopathic chemicals (also called Biofumigation with Brossice green manures).

On-farm research has been conducted since 1999 to determine the benefits of these crops and to improve their effectiveness.

WSU Publications

Green Manuring with Mustard: Improving an Old Technology

Green manure summary article in Agrichemical & Environmental News, June 2003.

Mustard Green Manures Replace Fumigant and Improve Infiltration in Potato Cropping System

Published in Plant Management Network; August 2003.

LATEST BLOG POSTS

- Northwest Rangelands.-Where Do.our Climate Vulnerabilities Lie?
- Learning from some of the first adopters of high residue farming in the Columbia Basin
- Big Biomass and More Often A Green Manure Frequency Hypothesis

SUBSCRIBE TO BLOG

Enter your email address to subso to our blog and receive notificatio of new posts by email.

Email Address

http://vegetablemdonline.ppath.corne II.edu/NewsArticles/biofumigationphytophtora.html WASHINGTON STATE

by Andrew McBuine, Irrigated Cropping Systems Agronomial, Washington State University Extension.

Questions?

4