- 1 Deep soil cores reveal large end-of-season residual mineral nitrogen pool
- 2 Sarah M. Hirsh* and Ray R. Weil
- 3 Department of Environmental Science and Technology, University of Maryland, College Park,
- 4 MD 20742
- 5 *Corresponding author (<u>shirsh@umd.edu</u>)

- 6 Core Ideas:
- Residual mineral N in 0-210 cm deep soil following summer crops was evaluated
- Soils contained a mean of 253 kg ha⁻¹ mineral N, 115 kg ha⁻¹ as NO₃-N
- 55% of mineral N was 90-210 cm deep, where it is most at risk for leaching loss
- 10 More residual NO₃-N remained after soybean than after corn
- Awareness of residual deep N levels is essential to develop N conservation practices

12 Abstract

13	The amount of mineral N remaining after cash crops informs agronomic and conservation
14	practices. Few studies investigate mineral N below 30 cm, yet deeper N is more at risk for
15	leaching to groundwater. We found, on average, 253 kg ha ⁻¹ of mineral N, 115 kg ha ⁻¹ in the
16	NO ₃ -N form, remaining after summer cash crop growth in the mid-Atlantic region. Of this
17	residual mineral N, 55% was 90-210 cm deep. More residual NO ₃ -N remained after soybean than
18	after corn. These substantial pools of mineral N remaining deep in the soil profile after
19	productive cash crops, even unfertilized soybean, suggest that practices should be designed to
20	scavenge residual N from deep soil layers in the fall, before it is lost over winter.

21	Nitrogen (N) loading to water bodies in humid temperate regions occurs primarily by
22	leaching during the non-growing season when evapotranspiration is minimal (Meisinger and
23	Delgado, 2002). In the Mid-Atlantic USA, where corn (Zea mays L.) and soybean (Glycine max
24	(L.) Merr.) are the main annual crops (USDA NASS, 2012), NO ₃ -N commonly leaches >1 m
25	between fall and spring (Angle, 1990; Forrestal, et al., 2014; Meisinger and Delgado, 2002).
26	Here, corn typically ceases N uptake by early-September when maturity is approached
27	(Ciampitti, et al., 2013; Hanway, 1963). Excessive N contributes to eutrophication and hypoxia
28	in the Chesapeake Bay (Ator and Denver, 2015; Phillips and Caughron, 2014), motivating the
29	Maryland legislature to mandate nutrient management plans (Parker, 2000) which regulate N
30	application to crops (Maryland Department of Agriculture, 2014). However, even with mandated
31	efforts, N leaching continues to be a concern in Maryland (USEPA, 2017).
32	Spatiotemporal patterns of soil N influence the accessibility of N to growing crops and its
33	susceptibility to leaching. End of growing season residual N, especially in deeper soil layers, is at
34	risk of leaching below the root zone of subsequent crops and eventually into groundwater
35	(Thorup-Kristensen, 1994). Even when crops are fertilized at recommended rates, substantial
36	mineral N (N_{min}) remains in the soil at the end of the growing season. In Pennsylvania, following
37	corn fertilized at economic optimum rates, 74 and 94 kg NO ₃ -N ha ⁻¹ remained in the upper 120
38	cm of non-manured and manured soils, respectively (Roth and Fox, 1990). Furthermore, fall
39	uptake of 80 to 220 kg N ha ⁻¹ by early-planted cover crops (Dean and Weil, 2009; Wang and
40	Weil, 2018) suggests that substantial soil N remains following even high yields of cash crops.
41	Data on the amounts and depth distribution of residual N_{min} in fall could assist in
42	optimizing N conservation practices, such as cover cropping.

43 Materials and Methods

44	Twenty-nine row-crop fields were sampled across the Piedmont, Ridge and Valley, and
45	Coastal Plain regions of Maryland and southeast Pennsylvania between 2014 and 2016. Fields
46	were selected from farm operations that responded to our request via Extension educators and
47	agronomy news outlets. The area has a temperate humid climate with 11°C mean annual
48	temperature and 1044 mm mean annual precipitation uniformly distributed among all months
49	(Maryland Department of State Planning, 1973; Polsky, et al., 2000). Soil infiltration rates are
50	typically 6-15 cm h ⁻¹ in the Piedmont and 13-28 cm h ⁻¹ in the Coastal Plain (Markewich, et al.,
51	1990). The crop grown prior to sampling was corn on 20 fields, soybean on four, perennial
52	grasses on two, fertilized winter wheat on two, and tobacco on one. Most fields were managed
53	with no-tillage or other conservation tillage and practiced winter cover cropping. Fields included
54	a range of dairy or poultry manure histories: 11 with no manure, 11 with regular manure
55	applications, and seven with occasional manure (one to two applications in past 10 years, or
56	history of regular manure applications but none applied in the past three years). The 23 fields in
57	Maryland applied N according to N-based nutrient management plans. The fields were grouped
58	by their soil parent materials: Coastal Plain sediments, acidic rocks, and calcareous rocks.
59	To evaluate effects of previous crop on residual N, four pairs of adjacent corn and
60	soybean fields were sampled in 2016. Three pairs had Coastal Plain sediments (Coastal Plain
61	region) and one pair had acidic rock (Piedmont region) parent materials. The cropping histories
62	included corn, soybean, small grain, and hay (see Figure 1). Paired-fields were sampled on the

63 same day and had the same soil series, manure and tillage history.

64 Soil sampling and analysis

Soil cores 210 cm deep were collected using hand-driven probes (Dean and Weil, 2009;
Veihmeyer, 1929) from 14 fields between 20-Aug and 20-Sep in 2014, from seven fields

Page 6 of 17

between 17-Aug and 25-Sep in 2015, and from eight fields between 24-Sep and 29-Oct in 2016. 67 In 2014 and 2016 two soil cores were collected at five points along a straight transect; in 2015 68 three soil cores were collected at four points within the field. Points were 20 to 50 m apart, 69 depending on the size and shape of the field; cores at a point were less than 1 m apart. In 2014 70 and 2016, soil was divided into 15 cm increments and two soil cores taken from each point along 71 the transect were composited for each depth increment. In 2015, soil was divided into 30 cm 72 increments, and the values of the three cores per point were averaged after soil analysis. 73 The soil was dried, sieved to 2 mm, and NO₃-N and NH₄-N was extracted (2 g soil in 20 74 75 mL solution) with 0.5 M potassium sulfate (K₂SO₄) and filtered. A Lachat QuikChem 8500 Automated Ion Analyzer (Hach Company, Loveland, CO) was used to analyze the filtrate for 76 NH₄-N (salicylate method) and for NO₂-N + NO₃-N (cadmium reduction method). Stocks of 77 NO₃-N and NH₄-N (kg ha⁻¹) were calculated from concentrations of NO₃-N and NH₄-N using 78 soil bulk density values (core method). Soil particle size analysis was performed by the modified 79 pipette method (Gavlak, et al., 2005). 80

81 Statistical analysis

All analyses were performed using SAS version 9.4 (SAS Institute, 2012). The level of 82 probability considered significant was p < 0.05, unless otherwise stated. All ANOVA tests were 83 performed using Proc Mixed. An ANOVA was performed to compare the NO₃-N or NH₄-N 84 amounts among parent material groups for 0-210 cm, 0-30 cm, 30-90 cm, 90-150 cm, and 150-85 86 210 cm depth increments, with parent material group as the fixed effect and field as a random effect. A Pearson product-moment correlation was performed using Proc Corr to relate the soil 87 NO₃-N and NH₄-N to soil percentages of sand and clay by depth. Proc Means was used to 88 89 calculate the coefficient of variation (CV) among the four to five points in the field (each point

averaging two to three cores) of the total 0-210 cm NO₃-N and NH₄-N for 19 of the fields. To
compare pools of inorganic N following corn versus soybean, for the paired fields, an ANOVA
was performed for each 30 cm increment soil depth on the stocks of NO₃-N and NH₄-N, with
crop type (corn or soybean) as the fixed effect and field as a random effect.

94 **Results**

95 Following summer crop senescence, on average 253 kg ha⁻¹ of N_{min} remained in the upper 210 cm of soil, with 22% located at 0-30 cm, 23% at 30-90 cm, 27% at 90-150 cm, and 28% at 96 150-210 cm depth. Across the 29 fields, 115 kg ha⁻¹ of the total N_{min} was NO₃-N and 138 kg ha⁻¹ 97 was NH₄-N. Nitrate-N levels for Coastal Plain sediments fields were lower than acidic rock 98 fields in the 90-150 cm depth and than calcareous rock fields in the 150-210 cm depth (p < 0.10; 99 Table 1). 100 Across the 29 fields, sand percentage was negatively correlated with NO₃-N 101 concentration (p < 0.10) at 0-30 cm, 90-150 cm, and 150-210 cm depths, but neither sand nor 102 clay percentage was correlated with NH₄-N concentration. Within-field CV of 0-210 cm total 103 stock of NO₃-N was on average 35% (standard error (SE) = 5.1, N = 19) and of NH₄-N was on 104 average 44% (SE = 5.0, N = 19). The CVs for the two N species were uncorrelated. 105 Based on the four pairs of adjacent corn and soybean fields sampled in 2016, there was 106 significantly more soil NO₃-N following soybean than corn at 30-60 cm, 120-150 cm, 150-180 107 cm, and 180-210 cm. Levels of soil NH₄-N differed between corn or soybean only at 180-210 cm 108

109 (Fig. 1).

110 Discussion

111 Why so much residual N?

112	The large pools of residual N represent both fertilizer N unused by summer crops (Wang				
113	and Weil, 2018) and N mineralized from soil and plant organic matter (Dahnke and Johnson,				
114	1990; Weil and Brady, 2017). Residual soil N is often assumed to be a result of N fertilizer				
115	over-application, or low N uptake during drought years (Forrestal, et al., 2012); hence, N				
116	management and policies to reduce N loading primarily focus on N fertilized fields (Maryland				
117	Department of Agriculture, 2014). However, we believe that large pools of residual N_{min} are				
118	more universal. Our data, in agreement with previous studies (Gentry, et al., 2001; Jaynes, et al.,				
119	2001; Kessavalou and Walters, 1999; Pantoja, et al., 2016; Rembon and MacKenzie, 1997)				
120	indicates soybeans without N fertilizer can leave even more residual nitrate in the soil profile				
121	than corn receiving fertilizer. Compared to corn, soybean creates a high N environment with less				
122	(and lower C/N ratio) residues, and therefore less N is immobilized (Angle, 1990; Gentry, et al.,				
123	2001; Green and Blackmer, 1995).				

While stocks of NO₃-N and NH₄-N in the soil profiles were similar, our results suggest 124 that NO₃-N is more transient, leaching through the soil, whereas NH₄-N is accumulating through 125 cation exchange sorption. For example, crop (corn versus soybean) affected NO₃-N levels much 126 more than NH₄-N levels. Similar results were found in Wisconsin (Bundy, et al., 1993) for the 127 upper 90 cm of soil in spring. Kristensen and Thorup-Kristensen (2004) and Bergström (1986) 128 also found that crop species affected residual NO₃-N more than residual NH₄-N. The negative 129 correlation between sand and soil NO₃-N concentration (but not NH₄-N concentration) supports 130 131 the expected faster NO₃-N leaching in sandier soils. The lack of correlation between clay and NH₄-N concentration is not surprising as the NH₄-N ions measured would occupy only a small 132 fraction of the cation exchange sites on any of the soils. 133

134 Importance of vertical location of N

135	Many studies report how soil N is affected by cover crops (Chu, et al., 2017; Ebelhar, et
136	al., 1984; Kuo and Jellum, 2002; Ladoni, et al., 2015; Ruffo, et al., 2004; Sainju, et al., 2006) or
137	other cropping practices (Anderson and Peterson, 1973; Poudel, et al., 2002; Rice, et al., 1986;
138	Scalise, et al., 2015) after sampling only 15 to 30 cm of soil. However, it is the deeper N (1-2
139	meters deep) that is most at-risk for leaching to groundwater before plants can take it up. Across
140	all our fields, 57% (65 kg N ha ⁻¹) of NO ₃ -N and 55% (138 kg N ha ⁻¹) of total N_{min} to 210 cm was
141	at 90-210 cm.
142	Land management implications
143	In regions, such as the mid-Atlantic, with year-long rainfall, favorable mineralization

conditions during much of the "off-season" and permeable soil types, scavenging residual N as
soon as possible after crop harvest will be important to prevent N from leaching beyond rooting
depth. We suggest that early-planted, deep-rooted cover crops could be a tool to accomplish such
N conservation.

148 Acknowledgments

The authors thank collaborating farmers and student technicians. This research was funded by
Northeast Sustainable Agriculture Research and Education program (Project No. LNE14-338)
and Maryland Soybean Board. Partial funding from USDA NIFA, Hatch project 1014496.

152 **References**

- 153 Anderson, F.N., and G.A. Peterson. 1973. Effects of continuous corn (Zea mays L.), manuring,
- and nitrogen fertilization on yield and protein content of the grain and on the soil nitrogen
- 155 conten. Agron. J. 65:697-700.
- Angle, J.S. 1990. Nitrate leaching losses from soybeans (*Glycine max* L. Merr.). Agric., Ecosyst.
 Environ. 31:91-97.
- 158 Ator, S.W., and J.M. Denver. 2015. Understanding nutrients in the Chesapeake Bay watershed
- and implications for management and restoration—the Eastern Shore (ver. 1.2, June
- 160 2015). USGS Circular 1406. http://dx.doi.org/10.3133/cir1406.
- Bergström, L. 1986. Distribution and temporal changes of mineral nitrogen in soils supporting
 annual and perennial crops. Swed. J. Agric. Res. 16:105-112.
- Bundy, L.G., T.W. Andraski, and R.P. Wolkowski. 1993. Nitrogen credits in soybean-corn crop
 sequences on three soils. Agron. J. 85:1061-1067.
- 165 Chu, M., S. Jagadamma, F.R. Walker, N.S. Eash, M.J. Buschermohle, and L.A. Duncan. 2017.
- 166 Effect of multispecies cover crop mixture on soil properties and crop yield. Agric.
- 167 Environ. Lett. 2:170030. doi:10.2134/ael2017.09.0030.
- 168 Ciampitti, I.A., J.J. Camberato, S.T. Murrell, and T.J. Vyn. 2013. Maize nutrient accumulation

and partitioning in response to plant density and nitrogen rate: I. Macronutrients. Agron.

- 170 J. 105:783-795.
- 171 Dahnke, W.C., and G.V. Johnson. 1990. Testing soils for available nitrogen. In: R.L.
- 172 Westerman, editor, Soil testing and plant analysis. SSSA Book Ser. 3. SSSA, Madison,
- 173 WI.

- Dean, J.E., and R.R. Weil. 2009. Brassica cover crops for nitrogen retention in the Mid-Atlantic
 Coastal Plain. J. Environ. Qual. 38:520-528.
- Ebelhar, S.A., W.W. Frye, and R.L. Blevins. 1984. Nitrogen from legume cover crops for notillage corn. Agron. J. 76:51-55.
- Forrestal, P.J., R.J. Kratochvil, and J.J. Meisinger. 2012. Late-season corn measurements to
 assess soil residual nitrate and nitrogen management. Agron. J. 104:148-157.
- 180 Forrestal, P., J. Meisinger, and R. Kratochvil. 2014. Winter wheat starter nitrogen management:
- a preplant soil nitrate test and site-specific nitrogen loss potential. Soil Sci. Soc. Am. J.
 78:1021-1034.
- Gavlak, R., D. Horneck, and R.O. Miller. 2005. Soil, plant and water reference methods for the
 western region. 3rd ed. 125. WREP.
- Gentry, L.E., F.E. Below, M.B. David, and J.A. Bergerou. 2001. Source of the soybean N credit
 in maize production. Plant Soil 236:175-184.
- Green, C.J., and A.M. Blackmer. 1995. Residue decomposition effects on nitrogen availability to
 corn following corn or soybean. Soil Sci. Soc. Am. J. 59:1065-1070.
- Hanway, J.J. 1963. Growth Stages of Corn (Zea mays, L.). Agron. J. 55:487-492.
- Jaynes, D.B., T.S. Colvin, D.L. Karlen, C.A. Cambardella, and D.W. Meek. 2001. Nitrate loss in
 subsurface drainage as affected by nitrogen fertilizer rate. J. Environ. Qual. 30:1305-
- 192 1314.
- 193 Kessavalou, A. and D.T. Walters. 1999. Winter rye cover crop following soybean under
- 194 conservation tillage: Residual soil nitrate. Agron. J. 91:643-649.

195

195	Kristensen, H.L. and K. Thorup-Kristensen. 2004. Uptake of ¹⁵ N labeled nitrate by root systems				
196	of sweet corn, carrot and white cabbage from 0.2-2.5 meters depth. Plant Soil 265:93-				
197	100.				
198	Kuo, S., and E.J. Jellum. 2002. Influence of winter cover crop and residue management on soil				
199	nitrogen availability and corn. Agron. J. 94:501-508.				
200	Ladoni, M., A.N. Kravchenko, and G.P. Robertson. 2015. Topography mediates the influence of				
201	cover crops on soil nitrate levels in row crop agricultural systems. PloS One 10:				
202	e0143358. doi:10.1371/ journal.pone.0143358				
203	Markewich, H.W., M.J. Pavich, and G.R. Buell. 1990. Contrasting soils and landscapes of the				
204	Piedmont and Coastal Plain, eastern United States. Geomorphology 3: 417-447.				
205	Maryland Department of Agriculture. 2014. AgBrief nutrient management program. Maryland				
206	Department of Agriculture, Office of Resource Conservation.				
207	http://mda.maryland.gov/Documents/ag_brief/AgBrief_NM.pdf (accessed 16 Sep. 2018).				
208	Maryland Department of State Planning. 1973. Natural soil groups of Maryland, technical series				
209	generalized land use plan. Publication 199. Baltimore, MD.				
210	Meisinger, J.J., and J.A. Delgado. 2002. Principles for managing nitrogen leaching. J. Soil Water				
211	Conserv. 57:485-498.				
212	Pantoja, J.L., K.P. Woli, J.E. Sawyer, and D.W. Barker. 2016. Winter rye cover crop biomass				
213	production, degradation, and nitrogen recycling. Agron. J. 108:841-853.				
214	Parker, D. 2000. Controlling agricultural nonpoint water pollution: costs of implementing the				
215	Maryland Water Quality Improvement Act of 1998. Agricultural Economics 24:23-31.				
216	Phillips, S., and B. Caughron. 2014. Overview of the U.S. Geological Survey Chesapeake Bay				
217	Ecosystem Program. USGS Fact Sheet 124-97. https://pubs.usgs.gov/fs/fs12497/.				

218	Polsky, C., J. Allard, N. Currit, R. Crane, and B. Yarnal. 2000. The Mid-Atlantic Region and its			
219	climate: past, present, and future. Climate Research 14: 161-173.			
220	Poudel, D.D., W.R. Horwath, W.T. Lanini, S.R. Temple, and A.H.C. van Bruggen. 2002.			
221	Comparison of soil N availability and leaching potential, crop yields and weeds in			
222	organic, low-input and conventional farming systems in northern California. Agric.,			
223	Ecosyst. Environ. 90:125-137.			
224	Rembon, F.S., and A.F. MacKenzie. 1997. Soybean nitrogen contribution to corn and residual			
225	nitrate under conventional tillage and no-till. Can. J. Soil Sci. 77:543-551.			
226	Rice, C.W., M.S. Smith, and R.L. Blevins. 1986. Soil nitrogen availability after long-term			
227	continuous no-tillage and conventional tillage corn production. Soil Sci. Soc. Am. J.			
228	50:1206-1210.			
229	Roth, G.W., and R.H. Fox. 1990. Soil nitrate accumulations following nitrogen-fertilized corn in			
230	Pennsylvania. J. Environ. Qual. 19:243-248.			
231	Ruffo, M.L., D.G. Bullock, and G.A. Bollero. 2004. Soybean yield as affected by biomass and			
232	nitrogen uptake of cereal rye in winter cover crop rotations. Agron. J. 96:800-805.			
233	Sainju, U.M., W.F. Whitehead, B.P. Singh, and S. Wang. 2006. Tillage, cover crops, and			
234	nitrogen fertilization effects on soil nitrogen and cotton and sorghum yields. Eur. J.			
235	Agron. 25:372-382.			
236	SAS Institute. 2012. The SAS system for Winows. Release 9.4. SAS Inst., Cary, NC.			
237	Scalise, A., D. Tortorella, A. Pristeri, B. Petrovičová, A. Gelsomino et al. 2015. Legume-barley			
238	intercropping stimulates soil N supply and crop yield in the succeeding durum wheat in a			
239	rotation under rainfed conditions. Soil Biol. Biochem. 89:150-161.			

- 240 Thorup-Kristensen, K. 1994. The effect of nitrogen catch crop species on the nitrogen nutrition
- of succeeding crops. Fertilizer Research 37:227-234.
- 242 USDA NASS. 2012. Census of Agriculture, Ag Census Web Maps.
- 243 https://www.agcensus.usda.gov/Publications/2012/Online_Resources/Ag_Census_Web_
- 244 Maps/Overview/ (accessed 16 Sep. 2018).
- USEPA. 2017. Interim Evaluation of Maryland's 2016-2017 Milestones Progress. US EPA.
- 246 https://www.epa.gov/sites/production/files/2017-
- 247 06/documents/md_interim_2016_2017_milestone_eval_20170630_0.pdf (accessed 16
- 248 Sep. 2018).
- Veihmeyer, F.J. 1929. An improved soil-sampling tube. Soil Sci. 27: 147-152.
- Wang, F., and R.R. Weil. 2018. The form and vertical distribution of soil nitrogen as affected by
 forage radish cover crop and residual side-dressed N fertilizer. Soil Sci. 183:22-33.
- Weil, R.R., and N.C. Brady. 2017. The nature and properties of soils. 15th ed.Pearson,
- 253 Columbus, OH.

254	Table 1. Soil NO ₃ -N, NH ₄ -N, and mineral N (N _{min}) (kg N ha ⁻¹) for 0-30 cm, 30-90 cm, 90-150
255	cm, 150-210 cm, and 0-210 cm. Values are means with standard error (SE) in parenthesis for all
256	fields (N=29), Coastal Plain sediments fields (N=14), calcareous rock fields (N=6), and acidic
257	rock fields (N=9). Within a mineral N type and depth increment, values followed by the same
258	letter do not differ significantly among Coastal Plain sediments, acidic rock, and calcareous rock
259	fields. The symbols * and \dagger indicate $p < 0.05$ and 0.1, respectively.

Soil parent material	Depth increment	NO ₃ -N	NH ₄ -N	N _{min}
	cm	kg N ha ⁻¹ (SE)		
	0-210	115 (12.5)	138 (15.6)	253 (23.5)
	0-30	24.9 (3.83)	31.3 (2.74)	56.3 (5.43)
All fields	30-90	25.2 (3.27)	33.6 (3.90)	58.7 (5.89)
	90-150	30.8 (3.66)	37.0 (4.70)	67.7 (7.16)
	150-210	33.9 (5.61)	36.0 (4.94)	69.9 (8.27)
	0-210	88.4 (17.8) a	137 (24.6) a	226 (37.8) a
	0-30	23.9 (5.08) a	30.0 (3.86) a	53.9 (8.22) a
Coastal Plain sediments	30-90	23.8 (6.11) a	33.5 (5.98) a	57.3 (10.4) a
	90-150	20.0 (3.55) a*	35.7 (6.63) a	55.7 (9.43) a
	150-210	20.7 (4.27) a [†]	38.1 (8.61) a	58.8 (11.5) a
	0-210	136 (45.4) a	153 (51.0) a	289 (96.5) a
	0-30	24.1 (8.03) a	35.9 (12.0) a	60.0 (20.0) a
Acidic rocks	30-90	25.2 (8.41) a	36.2 (12.1) a	61.4 (20.5) a
	90-150	44.5 (14.8) b*	43.0 (14.3) a	87.5 (29.2) a
	150-210	42.4 (14.1) ab†	38.1 (12.7) a	80.5 (26.8) a
	0-210	144 (58.8) a	117 (47.6) a	261 (106) a
	0-30	28.5 (11.6) a	27.8 (11.4) a	56.3 (23.0) a
Calcareous rocks	30-90	28.1 (11.5) a	29.9 (12.2) a	58.0 (23.7) a
	90-150	35.3 (14.4) ab*	30.9 (12.6) a	66.3 (27.1) a
	150-210	52.2 (21.3) b [†]	28.0 (11.4) a	80.2 (32.7) a

260

Figure 1. NO₃-N and NH₄-N (kg N soil layer⁻¹ ha⁻¹) in four pairs of adjacent corn and soybean fields. Crop history of fields included: Field 1A 2016 corn, 2013-2015 Timothy hay; Field 1B 2016 soybean, 2015 corn silage, 2014 corn, 2013 sorghum; Field 2A 2016 corn, 2015 wheat/soybean, 2014 corn, 2013 wheat/soybean; Field 2B 2016 soybean, 2015 wheat/soybean, 2014 soybean, 2013 wheat/soybean; Field 3B 2016 soybean, 2015 wheat/soybean, 2013 soybean; Field 3B 2016 soybean, 2015 wheat/soybean, 2014 soybean, 2013 soybean; Field 4B 2016 soybean, 2013 corn; Field 4A 2016 corn, 2015 soybean, 2014 corn, 2013 soybean; Field 4B 2016 soybean, 2015 soybean, 2014 soybean, 2013 corn. Corn and wheat received 123-168, and hay received 73 kg N ha⁻¹. All fields had winter cover crops or small grains for the previous five years. No-till was practiced for five years on three pairs, and two years on one pair. Three pairs had no manure applied; one pair had one to two applications of dairy manure in the past 10 years. The symbols **, *, †, ns indicate *p* < 0.01, 0.05, 0.1, and not significant, respectively.

82x141mm (150 x 150 DPI)