Developing Sensor-Based Irrigation Systems for Sustainable Vegetable Crops

PennState Extension

Francesco Di Gioia – Assistant professor of Vegetable Crop Science

Pennsylvania State University – Department of Plant Science, State College, PA

The Successes and Challenges of Sensor-Based Irrigation for Crops in Pennsylvania Penn State Extension webinar - May 19, 2020 – State College, PA

- ✓ Importance of irrigation for vegetable crops
- ✓ Application of sensor-based irrigation:
 - alternative strategies
 - pros and cons

resource use efficiency & sustainability

Rational **resource management** is fundamental for the success and long-term sustainability of any vegetable cropping systems because it affects:

- Yield
- Quality
- Sustainability

irrigation & vegetable yield

Photo by Di Gioia

irrigation & vegetable quality

Photo by Di Gioia

irrigation & vegetable quality

BER

Blossom End Rot, Calcium deficiency & Irrigation management

Federal Clean Water Act (US EPA, 2010): Federal Total Maximum Daily Load have been defined, requiring the implementation of BMPs

BMPs: tools and important practices, including
irrigation and fertilization management
practices aimed at reducing vegetable crop
environmental impact while assuring optimal
yields and quality

resource use efficiency & sustainability

Eutrophication

Excess of nutrients (especially nitrates and phosphates) in a body of water causing excessive plant and algae growth

Protected vegetable production systems

Pennsylvania high tunnel vegetable production

PennState

College of Agricultural Sciences

Soil texture & Irrigation management

Analysis of the Soil

Physical properties: soil texture

Hydrological properties: water holding capacity, air capacity, water management

Sensor based automated irrigation systems

USDA-NIFA 2019 NE SARE Research and Education grant: **"Sensor-based precision irrigation system for tree fruit and vegetable crops**" PI: Long He. Co-PI: Francesco Di Gioia, Daniel Weber, James Schupp, Tara Baugher

Experimental location: Russell E. Larson Agricultural Research Center Test crop: Fresh-market tomato cv: Red Deuce F1 (HM Clause) Crop cycle: June-October 2019 (Planting 6-6-2019)

<u>Objective</u>: to compare different irrigation strategies and sensor-based irrigation systems <u>Treatments</u>:

- T1: Irrigation based on experience
- T2: Irrigation based on estimated evapotranspiration
- T3: Irrigation based on soil moisture sensors
- T4: Irrigation and nitrogen fertilization based on a Decision Support System

<u>Experimental design</u>: Randomized complete block design with 4 replications <u>Data collection</u>: Environmental data, water consumption, crop yield

ZENTRA Cloud fxd92@psu.edu 🚨 **PSU Vegetable Lab** Manage Devices Manage Users \checkmark Home System Settings **Device Inventory** Last Month < III Dashboard ♀ Map List Detail 1 ✓ /// Smart Irrigation z6-02965 ZL6 Ł 000-Updated 46 minutes ago P z6-02963 <u>@</u> z6-02965 Water Content (m3/m3) Reset Axis ① z6-02966 Port 1: -15 cm TEROS 10 Port 2: -15 cm TEROS 10 Port 5: -15 cm TEROS 10 Port 6: -15 cm TEROS 10 P z6-03086 0.35 > /// smart Wheather 1 0.30 0.25 0.20 Attiva Windows Aug 05 Jul 29 Jul 15 Jul 22 Passa a Impostazioni per attivare Windows. + Add new...

Soil Volumetric Water Content Sensors

GesCoN Fertigation manager module

www.ecofert.it

Elia, 2019

Treatment	Water applied (%)	Water saving (%)	Marketable yield (lb/acre)
T1: based on experience	100		58772
T2: based on ET	89.7	10.3	58771
T3: based on SMS	58.1	41.9	59704
T4: based on DSS	75.5	24.5	60320

Sensor based irrigation pros & cons

Irrigation management strategy	Pros	Cons
T1: based on experience	Standard	Low efficiency
T2: based on ET	Higher efficiency, possibly low cost	Requires lots of daily calculations
T3: based on SMS	Site-specific, very efficient	Cost of investment, limited spatial representativity
T4: based on DSS	Very efficient, possibly site specific	User friendly, potential cost of investment

Acknowledgements

Source of funds: USDA Northeast SARE Research and Extension Grant Project (Grant No. 19-378-33243).

Long He Lab – Penn State NE SARE Fundings

University of Foggia

Acknowledgements

Source of funds:

USDA NIFA Hatch Appropriations under Project #PEN04723 and Accession #1020664

Special thanks to

L. Vecchia, G. Silva-Pumarada, Z. Nur, C. Sanchez, D. Lehr

Questions?

Thank You!!!

fxd92@psu.edu