INVESTIGATING ETHNIC AND SPECIALTY CROPS PRODUCTION ON THE DELMARVA PENINSULA

Ms. Corrie Cotton Research Assistant Professor

> Ms. Nadine Burton Ph.D. Graduate Student

Ms. Celia Whyte Research Assistant

OUTLINE

- Project Background
- Project Goals
- Project Objectives
- Project Overview

PROJECT BACKGROUND

10th Annual Small Farms Conference (2013)

- "World-Food Ethnic Crops" Educational Session
- Small Farmers: Strong Interest in Growing Ethnic Crops

Capacity Building Grant

- Stakeholder-Driven & Farmer Centered
- Demand for locally grown & safe food as well as nontraditional food continues to rise
- Economic opportunities have arisen for specialty crop production catering to the ethnically diverse consumers along the eastern coast of the United States

UNIVERSITY OF MARYLAND E X T E N S I O N Solutions in your community

PROJECT BACKGROUND: DELMARVA PENINSULA

- Increasing immigrant/ethnic population on Delmarva has created the demand for ethnic crops in the region
- Increased demand for locally grown food provides opportunities for small farmers to grown ethnic and specialty crops to serve the increasing local ethnic markets
- Niche markets can create opportunities for small farmers to sustain farming operations and increase profitability

Ethnic Groups	Population (2010)
Native American	149,500
Asian	895,900
African American	3,643,400
Hispanic	1,175,600
Caucasian	9,808,200
Total Population	15,672,600

Census of Population, 2010 (www.census.gov/population)

PROJECT GOALS

Overall Goal of Project:

- Address stakeholders' needs, provide research-based production and marketing practices, and evaluate the economic viability of popular ethnic crops that can successfully be grown on the Delmarva Peninsula
- Assist small farmers in the production of high-value alternative crops that could improve the profitability of small farm operations

PROJECT OBJECTIVES

- Objective I: Investigate the potential of ethnic and specialty crop production on the Delmarva Peninsula through ethnic/specialty crop trials
- Objective 2: Develop enterprise budgets and marketing guidelines for the ethnic crops that thrive under the local climatic conditions
- **Objective 3:** Provide ethnic and specialty crop production guidelines to the stakeholders
- Objective 4: Provide outreach and educational opportunities for ethnic and specialty crop production practices

PROJECT OBJECTIVES

- Objective I: Investigate the potential of ethnic and specialty crop production on the Delmarva Peninsula through ethnic/specialty crop trials
- Objective 2: Develop enterprise budgets and marketing guidelines for the ethnic crops that thrive under the local climatic conditions
- **Objective 3:** Provide ethnic and specialty crop production guidelines to the stakeholders
- Objective 4: Provide outreach and educational opportunities for ethnic and specialty crop production practices

PROJECT OVERVIEW

Objective I: Field Screening Crop Trials (2015)

- University of Maryland Eastern Shore (UMES) Agricultural Experiment Station in Princess Anne, MD
- Field trials were conducted to select elite plant species that perform well in the local environment
- Twenty-one Chinese, Asian, Indian, Hispanic, Caribbean, and African ethnic crops were evaluated in the crop trials
 - Experimental Design: Randomized Complete Block Design with four replications each
 - Each Plot: one 3-meter row per crop with one meter between rows and two meters between plots
 - Crop quality, yield, and ease of growth were evaluated

TABLE I: ETHNIC CROPS USED IN THE 2015 CROP TRIALS

Ethnic	Common Names	Ethnic Crops Botanical	Ethnic	Common Names	Ethnic Crops Botanical
Groups		Names	Groups		Names
Chinese	Smooth Luffa	L. aegyptiaca	Asian	Bottle Gourd	Lagenaria siceraria
	Oriental Eggplant	Solanum melongena		Fenugreek	Trigonella foenum-graecun
	Edamame	Glycine max			
	Napa Cabhage	Brassica rana sub so pekinensis	African/	Amaranth	Amaranthus
	Napa Cabbage	Di assica i apa sub sp. perinensis	Jamaican	(3 different varieties)	(viridis, callaloo, and prya)
	Bok Choy	Brassica rapa sub sp. Chinensis			Hibiscus sabdariffa
African	Avuvo	Celosia argentea		Hibiscus	T HUISCUS Sabdai IIIa
	Garden Egg	Solanum acutangula		Pumpkin	Cucurbita maxima
	Gboma	Solanum macrocarpon	Asian/	Hyacinth Beans	Lablab purpureus
	Kitely	Solanum gilo	Indian	Snow Peas	Pisum sativum
	Jute Leaf	Corchorus olitorius			
	Water Leaf	Talinum triangulare	Mexican	Tomatillo	Physallis philadelphica
	Jamma Jamma	Solanum scabrum			

2015 CROPTRIALS

2015 CROPTRIALS

ELITE PLANT SPECIES

Callaloo (A. viridis)

Bok choy (Brassica rapa)

www.google.com/search?q=Hibiscus+sabdariffa&biw; www.kitazawaseed.com; lenaskitchen.wordpress.com

Sorrel (Hibiscus Sabdariffa)

PROJECT OVERVIEW: DELMARVA PENINSULA

Cropping on the Delmarva Peninsula

- Constrained by sandy soils that are mainly acidic and low in plant nutrients
- Region is prone to high temperatures and periodic drought conditions during the growing season
 - Results in low yield production and low farm income

Sustainable Production Practices

- Improve soil biodiversity
- Improve soil fertility
- Provide safe and nutritious crops
- Reduce the use of chemical fertilizers
- Reduce environmental pollution

(www.worldatlas.com)

PROJECT OVERVIEW: OBJECTIVE I

Sustainable Production Practices (2016)

- University of Maryland Eastern Shore (UMES) Agricultural Experiment Station in Princess Anne, MD
- Evaluate various sustainable production practices to analyze the growth and development of the selected elite plant species (bok choy, amaranth, hibiscus)
- Organic Fertilizers
 - Compost & Vermicompost
 - Fish Emulsion
 - Biofertilizers

Benefits of Organic Fertilizers

- Compost and Vermicompost: Increase crop yield, suppress diseases, reduce waste, improve soil fertility and structure, increase microbial population, improve plant health, and nutritional quality
- Fish Emulsion: Improve plant growth and yield, suppress diseases, and increase microbial population
- Biofertilizers: Nitrogen fixation, solubilize phosphorus, and stimulate plant growth (Vesicular-Arbuscular Mycorrhiza, *Trichoderma*, Azospirillum)

PRELIMINARY GREENHOUSE EXPERIMENTS

Greenhouse Study I: Evaluate and identify elite biofertilizer(s) on bok choy growth and development using a complete randomized design with 8 treatments, 2 soil types (potting mix and field soil) with 4 replicates each

Biofertilizer Treatments:

- I. Control (no inoculum)
- 2. Trichoderma
- 3. Azospirillum
- 4. Endo/Ectomycorrhizae
- 5. Trichoderma + Azospirillum
- 6. Trichoderma + Endo/Ectomycorrhizae
- 7. Azospirillum + Endo/Ectomycorrhizae
- 8. Trichoderma + Azospirillum + Endo/Ectomycorrhizae

Greenhouse Study 2: Evaluate the effect of organic fertilizers on the growth and development of bok choy using a complete randomized design with 9 treatments and 4 replicates each

Organic Fertilizer Treatments:

- I. Chemical Fertilizer (Control)
- 2. Vermicompost Tea I (Veteran Compost)
- 3. Vermicompost Tea 2 (Wiggle Worm Soil Builder)
- 4. Fish Emulsion I (Alaska Fish Emulsion)
- 5. Fish Emulsion 2 (Neptune's Harvest Fish Emulsion)
- 6. Vermicompost Tea I + Fish Emulsion I
- 7. Vermicompost Tea I + Fish Emulsion 2
- 8. Vermicompost Tea 2 + Fish Emulsion I
- 9. Vermicompost Tea 2 + Fish Emulsion 2

2016 FIELD RESEARCH EXPERIMENT ONE

Objective: Investigate the effect of organic fertilizers on the growth and development of bok choy

Fertilizer Treatments:

- I. Commercial Fertilizer (20-20-20) (Control)
- 2. Vermicompost Tea + Fish Emulsion (VCT+FE)
- 3. Poultry Litter Leachate (PLL)
- 4. Commercial Fertilizer + Azospirillum (AZO)
- 5. Vermicompost Tea + Fish Emulsion + Azospirillum
- 6. Poultry Litter Leachate + Azospirillum
- Experimental Design: Randomized Complete Block Design with four replications each (two locations/two growing seasons)
- Each Plot: three 1.5-meter rows with 1 meter between rows and 2 meters between plots; 8" spacing between plants
- Yield and crop quality were evaluated

EXPERIMENT ONE RESULTS: BOK CHOY

Early Summer Bok Choy

Late Summer Bok Choy

■ Location 1 ■ Location 2

2016 FIELD RESEARCH EXPERIMENT TWO

Objective I: Investigate the effect of organic fertilizers on the growth and development of sorrel and callaloo

Fertilizer Treatments:

- I. Commercial Fertilizer (20-20-20) (Control)
- 2. Vermicompost Tea + Fish Emulsion (VCT+FE)
- 3. Poultry Litter Leachate (PLL)
- Experimental Design: Randomized Complete Block Design with four replications each (two locations)
- Callaloo Plots: three 2-meter rows with 1 meter between rows and 2 meters between plots; 12 " spacing between plants
- Sorrel Plots: three 3-meter rows with 1 meter between rows and 2 meters between plots; 18" spacing between plants
- Yield and crop quality were evaluated

Objective 2: Investigate the effect of biofertilizers on the growth and development of sorrel and callaloo

Biofertilizer Treatments:

- I. Commercial Fertilizer (20-20-20) (Control)
- 2. Azospirillum (AZO)
- 3. Endo/Ectomycorrhizae (Endo/Ecto)

2016 FIELD RESEARCH EXPERIMENT TWO

EXPERIMENT TWO RESULTS: CALLALOO

Objective I: Organic Fertilizers

Objective 2: Biofertilizers

EXPERIMENT TWO RESULTS: SORREL

Objective I: Organic Fertilizers

Objective 2: Biofertilizers

FURTHER ANALYSIS

Evaluate the effect of sustainable production practices (organic fertilizers and biofertilizers) on the phytonutrient and mineral content of bok choy, sorrel, and callaloo

- Phytonutrients (carotenoids, glucosinolates, and phenolic compounds)
- Vitamins (B- profile, K, and total vitamin A (retinol and beta-Carotene and vitamin C)
- Minerals (such as Ca, Fe, K, Se, P, and Mg)

2017 ON-FARM TEST TRIALS

Objective 4: Provide outreach and educational opportunities for ethnic and specialty crop production practices

- **On-Farm Test Trials**: Conducted by participating small farmers on the Delmarva
- Purpose: To demonstrate the practicality and viability of growing specialty crops in a "real farm" environment

THANKYOU

Ms. Corrie Cotton University of Maryland Eastern Shore Department of Agriculture, Food, and Resource Sciences One Backbone Road Princess Anne, MD 21853 cpcotton@umes.edu 410-651-6630

