Kernza Agronomics Research: A Forever Green Update

Acknowledgments

Team

- UMN: Craig Sheaffer, Jessica Gutknecht, Don Wyse, Nancy Ehlke, Walid Sadok, Colin Cureton, Connie Carlson, Kevin Betts, Donn Vellekson
- Sustainable Agroecology Lab: Katherine Bohn, Dayana Carvalho, Stella Pey, Sienna Nesser, Evelyn Reilly, Garett Heineck, Manbir Rakkar
- Lab Alumni: Galen Bergquist, Michelle Dobbratz, Chris Fernandez, Mitch Hunter, Nicole Tautges
- Farmer Partners Carmen Fernholz, Kaleb Anderson, Dan Honken, Kurt Kimber, Scott Johnson

44% of cropland occupied by • Corn

- Wheat
- Rice

Kernza Perennial Grain

Jerry Glover of The Land Institute: Photo by Jim Richardson

- Relatively large seeds for a perennial grass
- Deep, dense root system
- Tolerant to a wide range of temperature and precipitation patterns

Breeding & Genetics Environmental Agronomy Impacts Food Commercialization Science

Implementation

Environmental Impacts GHG Mitigation Biodiversity Enhancement

Groundwater Protection

Carbon Soil Sequestration Conservation

Grain Harvest

Seeding Date Trial

Seeding Date Trial

			•		
			Roseau, Minnesota		
			August 15, 2017		
			September 1, 2017		
Т			September 15, 2017		
	1 Frank	\sim	October 1, 2017	St. Paul, N	Vinnesota
┢			October 15, 2017	Year 1	Year 2
		Salina, Kansas	May 2, 2018	September 1, 2016	August 18, 2017
\vdash		September 6, 2016	June 1, 2018	October 1, 2016	September 1, 2017
	7	September 15, 2016		December 15, 2016	September 15, 2017
		September 29, 2016		March 21, 2017	October 1, 2017
		October 13, 2016		April 1, 2017	October 15, 2017
F	<u> </u>	November 1, 2016		May 1, 2017	November 1, 2017
	2	November 17, 2016			November 17, 2017
		February 15, 2017			December 1, 2017
		March 16, 2017			April 1, 2018
	_	April 13, 2017			May 1, 2018

Seeding Date Trial

Published February 2, 2017

AGRONOMY, SOILS & ENVIRONMENTAL QUALITY

Intermediate Wheatgrass Grain and Forage Yield Responses to Nitrogen Fertilization Optimum N Fertilizer Rate: 60 – 80 kg ha⁻¹

Jacob M. Jungers,* Lee R. DeHaan, Kevin J. Betts, Craig C. Sheaffer, and Donald L. Wyse

Agronomy Journal · Volume 109, Issue 2 · 2017

What yield components are affected by N fertilizer?

Yield component	R ²	Р
Tillers m ⁻¹	0.001	0.42
Spikes m ⁻¹	0.13	< 0.001
Fertile tiller proportion	0.34	<0.001
Fertile tiller base mass	0.04	< 0.001
Seed mass spike ⁻¹	0.21	< 0.001
Seeds spike ⁻¹	0.20	< 0.001
Individual seed mass	0.02	0.003

Fernandez et al., in review

Nitrogen Fertility and Legume Intercropping What yield components are affected by N fertilizer?

Does timing of N fertilization matter?

Can legume intercrops fix N for Kernza uptake?

Can legume intercrops fix N for Kernza uptake?

Nitrogen Fertility and Legume Intercropping Can legume intercrops fix N for Kernza uptake?

Weed Management

Treatment No.	Herbicide	lb ae/A	Timing
1	2,4-D Amine 1X	0.95	1 Fall 2019
2	2,4-D Amine 2X	1.9	1 Fall 2019
3	Clopyralid 1X	0.09	1 Fall 2019
4	Clopyralid 2X	0.18	1 Fall 2019
5	Clopyralid 1X + MCPA 1X	0.09 + 0.50	1 Fall 2019
6	Clopyralid 2X + MCPA 2X	0.18 + 1.0	1 Fall 2019
7	MCPA 1X	0.5	1 Fall 2019
8	MCPA 2X	1	1 Fall 2019
9	2,4-D Amine 1X	0.95	2 Spring 2020
10	2,4-D Amine 2X	1.9	2 Spring 2020
11	Clopyralid 1X	0.09	2 Spring 2020
12	Clopyralid 2X	0.18	2 Spring 2020
13	Clopyralid 1X + MCPA 1X	0.09 + 0.50	2 Spring 2020
14	Clopyralid 2X + MCPA 2X	0.18 + 1.0	2 Spring 2020
15	MCPA 1X	0.5	2 Spring 2020
16	MCPA 2X	1	2 Spring 2020
17	Nontreated check (NTC)	0	

Harvest Timing – Swathing vs. Direct Combining

Harvest Timing – Swathing vs. Direct Combining

Swath and	d Combine	Direct Combine		
Pros	Cons	Pros	Cons	
Flexible harvest timing, anytime after physiological maturity	Must be timed to allow quick windrow drying – no rain for 3 days	Fewer passes, Less equipment	Wetter grain requires drying	
Grain may not require mechanical drying	Grain vulnerable to microbial contamination in windrow with rain		If delayed to allow uniform drying, shattering occurs	
Cleaner seed/grain harvest			Grain/seed requires more extensive conditioning	

Rapid drying begins about 450 GDD post anthesis

Maximum dry seed weight at about 900 GDD post anthesis

Maximum grain yield per spike about 600 GDD post anthesis

- Rapid moisture loss begins around <u>450 GDD</u> post anthesis
- Maximum seed dry weight occurs around <u>900 GDD post</u> anthesis
- Maximum grain yield per spike about 600 GDD post anthesis

Plant density, seed head production and grain yields

Plant density, seed head production and grain yields

Reduce plant density by inter-row disturbance

Inter-row cultivation

Inter-row herbicide

Potential mechanism 1 – Photosynthesis rates decline with stand age

Potential mechanism 2 – Changes red:far red light affect flowering

Spring

None

Fall

Spring + Fall

Spring + Fall

Summary

• Summer straw harvest is more profitable than spring or

fall haying

- Fall haying does increase profitability
- Profitability is highest in 15 or 30 cm rows

Termination and Rotation

- How many years should Kernza be in the field as part of a rotation?
- How and when can Kernza be terminated to prevent C losses?
- What are the rotation effects of Kernza on subsequent crops?

Future Research

Interactions among N & P fertilizer, mycorrhizal fungi, and Kernza yields

- Can P fertilization limit lodging and increase grain yields under high N fertilization?
- Does N fertilization affect arbuscular mycorrhizal fungi (AMF) colonization and function?

Acknowledgments

Team

- UMN undergraduate interns, technicians, grad students, postdocs, PIs
- Green Lands Blue Waters
- The Land Institute
- The Forever Green Initiative

Funding USDA – SARE USDA – NIFA Minnesota Legislative Trust Fund for Natural Resources (LCCMR) Clean Water Fund – Forever Green Initiative Institute for Renewable Energy and the Environment The Land Institute and Malone Family Foundation Minnesota Department of Agriculture

Questions

