

Growing Our Own Nitrogen: Results from 12 On-Farm Trials in MA & VT

Becky Maden, UVM Katie Campbell-Nelson, UMass Ryan Karb, Many Hands Farm Corps, MA

December 14th, NEVFC, Manchester, NH

Why Bother Growing Nitrogen?

On-Farm N Production

- Reduces the need for blended fertilizers, composts, and manures
- Less imports onto farm, more sustainable
- Saves money on purchased soil amendments
- Increases soil health

Vermont's Clean Water Act Required Agricultural Practices (RAPs)

Effective July 1, 2017

"...improve the quality of Vermont's waters by reducing and eliminating cropland erosion, sediment losses, and nutrient losses"

Phosphorus is the nutrient of most concern- if soil P is over 20 ppm, farmers must reduce P applications.

Plant Nutrient Regulations in Massachusetts

December 5th, 2015

- Specify <u>WHEN</u> plant nutrients may be applied and <u>LOCATIONS</u> in which plant nutrients shall not be applied
- General requirements include:
 - Follow UMass guidelines for nutrient management

Soil Phosphorus Levels on 11 Commercial **Vermont Vegetable Farms**

Soil Phosphorus levels (ppm)

Using compost or manure to meet N leads to soil phosphorus accumulation on vegetable farms

*Adapted from "Using Manure and Compost as Nutrient Sources for Fruit and Vegetable Crops" Univ. of MN Extension – Numbers vary widely based on manure and compost used.

CULTIVATING HEALTHY COMMUNITIES

P added in manure or removed by crop

Figure 5. Applying manure to meet crop N needs (about 200 lb available N/acre) adds much more P than corn crop needs.

Legume Cover Crops

- Source of N with no additional P
- Cost-benefit varies based on variety, seed cost, seeding rate, region, termination time, etc.
- Likely to be cost effective for most organic growers compared to other sources of N.

CULTIVATING HEALTHY COMMUNITIES

What we thought we knew

Nitrogen use curves

Source: Redrawn after Kato (2000)

* i.e. leaf vegetables which form a head, such as cabbage

Figure 1. Timing of nitrogen mineralization from soil organic matter, cover crop residue, and organic fertilizer in relation to crop nitrogen uptake.

Estimating Nitrogen availability

New England Vegetable Management Guide:

https://nevegetable.org/

PNW 636 · November 2012

ESTIMATING PLANT-AVAILABLE NITROGEN RELEASE FROM COVER CROPS

D.M. Sullivan and N.D. Andrews

HIGHLIGHTS

- Legume cover crops provide up to 100 lb PAN/a. To maximize PAN contribution from legumes, kill the cover crop at bud stage (early May).
- Cereal cover crops immobilize up to 50 lb PAN/a. To minimize PAN immobilization from cereals, kill the cover crop during the early stem elongation (jointing) growth stage (early April).
- Legume/cereal cover crop mixtures provide a wide range of PAN contributions, depending on legume content. When cover crop dry matter is 75 percent from cereals + 25 percent from legumes, PAN is usually near zero.
- A laboratory analysis for cover crop total N as a percentage in dry matter (DM) is a good predictor of a cover crop's capacity to release PAN for the summer crop.
 - When cover crops contain a low N percentage (less than 1.5 percent N in DM), they provid

Most Plant Available Nitrogen is released 4-6 weeks after cover crop kill.

- PAN from legume cover crops is usually much less expensive than PAN from organic fertilizers.
- Values for cover crop PAN listed here are most applicable to winter cover crop/summer vegetable crop rotations in western Oregon and Washington.

Dan M. Sullivan, Extension soil scientist, and Nick D. Andrews, small farms Extension agent; both of Oregon State University

A Pacific Northwest Extension Publication Oregon State University · Washington State University · University of Idaho

Divide the total estimated N content of your green manure by 2 if you are plowing it down and the weather is expected to be warm with adequate rain (based on seasonal averages, or, if you're feeling lucky, on astrological predictions). Divide by 4 (conservative estimate) if you are leaving the green manure on the surface in a no-till system or if you are cropping during a cold or very wet season.

CULTIVATING HEALTHY COMMUNITIES

Growing Our Own Nitrogen: Results from On-Farm Trials in VT

Becky Maden, University of Vermont Extension

December 14th, NEVFC, Manchester, NH

Understanding Nitrate in Vermont Our research questions

- Can we rely on the nitrate produced by legumes for cash crops?
- Timing and duration of nitrate availability from legume cover crops for cash crop uptake?
- Best time (date) to incorporate legume cover crop for maximum N availability?
- Compare common legume cover crops
- Best time to take a PSNT for veg crops?
- Cost/ benefit analysis of N provided by legume cover crops?

2016 Background Study

- Landscape scan of 11 VT veg farms
- Farmers sampled 6 different legume cover crops already seeded on the farms
 - Farmers maintained usual practices including fertilization and irrigation.
- Monthly PSNT samples from preincorporation through October

CULTIVATING HEALTHY COMMUNITIES

Soil Nitrate Levels Following Rye Vetch Cover Crop

Findings...

- Fall planted Rye Vetch and spring planted Oat Pea release max plant available nitrogen (PAN) 4-6 weeks after incorporation
- Seeding legume with grain helps sustain nitrate levels
- Annual rainfall and temperature **major** factor in nitrate availability

Two Year On-Farm Trial (2017-2019)

- 4-6 commercial vegetable farms
- ¹/₄- ¹/₂ acre blocks
- Spring: Oat Pea (120# Peas, 20# oats), seeded April 22 (+/- 1 week)
- Fall: Rye Vetch (70# Rye, 20# vetch), seeded September 15 (+/-1 week)
- Cash crop= Transplanted sweet corn, var. Montauk

2017 Trial Farms in VT

- All Commercial, Organic Vegetable Farms
- 3 in Addison County
- 2 in Bennington County
- 1 in Orange County

		18 ft	18 ft	18 ft	18 ft	18 ft
Trial Layout	50 ft	Kreher's 5-4-3	Incorp Date 2	Incorp Date 1	Incorp Date 3	Control (No CC)
Block Design	25 ft					
 Treatments: 3 Incorporation dates Grower Standard (Kreher's 5-4-3) 100 lbs N/ Acre Control (no cover crop) 	50 ft	Incorp Date 1	Incorp Date 3	Control (No CC)	Kreher's 5-4-3	Incorp Date 2
 All blocks amended with P and K to match 5-4-3 	25 ft					
UNIVERSITY OF EXTENSIO	50 ft	Incorp Date 2	Control (No CC)	Kreher's 5-4-3	Incorp Date 1	Incorp Date 3

Trial Timeline

- April 2017 Seed Oat Pea Cover Crop
- May-September Collect PSNTs every other week
- June Collect biomass and incorporate cover crops
- June Transplant sweet corn
- September Harvest sweet corn
- September Collect yield data and end of season stalk nitrate tests
- September Seed rye vetch for 2018 plots

Data Collected

- Soil Nitrate (PSNT) every other week for 6 weeks
 - % Cover of cover crop
 - Weed species and density
 - Biomass of cover crop before incorporation
 - Data Loggers soil temperature and soil moisture
- End of season cornstalk nitrate test
- Sweet corn yield

Preliminary Results...from one farm

Composted Chicken Manure (100# N/ acre)

Variables in an on-farm trial

- Available equipment for seeding, incorporation, planting, and cultivating
- Soil type and soil chemistry
- Farmer practices
- Farmer needs
- Weather—temperature and rainfall

2016 Percent Deviation from Average Rainfall

2017 Percent Deviation from Average Rainfall

CULTIVATING HEALTHY COMMUNITIES

Preliminary Findings

- Overall crop quality and cash crop yield was best in plots with Kreher's 5-4-3
- Next best was third (last) incorporation (June 19)
- Control and first incorporation were both very poor cash crops
- Pea oat cover crop alone does not provide enough N for marketable sweet corn yields

DATA CURRENTLY UNDER ANALYSIS—STAY TUNED!

Sweet Corn Yield

Percent Marketable Ears

■ Farm 1 ■ Farm 2 ■ Farm 3

Management Take Homes

- Incorporate 4-6 weeks before peak cash crop N need.
- Take a PSNT 4-5 weeks after CC incorporation

 sidedress if recommended
- Don't skimp on P and K when counting on legume N
- Incorporated cover crop residue helps with soil tilth after heavy rain (especially on clay)
- Weather events change nitrate availability. Pay attention and be ready to sidedress after heavy rains during peak crop need

Ongoing questions...

- How to manage variables associated with on farm research
- How to engage farmer participation
- What does the PSNT really tell us??
- What data/ management recommendations will be most useful to farmers from this research?
- When do cash crops really need the N?

Thank you Farmers!

Cedar Circle Farm Clearbrook Farm Elmer Farm Gildrien Farm Mighty Food Farm Singing Cedars Farmstead

Thank you funders!

- Vermont Specialty Crop Block Grant Program
- University of Vermont Extension
- New England Vegetable and Berry Growers' Association Research Fund
- Vermont Vegetable and Berry Growers' Association Research Fund

Contact: Becky Maden University of Vermont Extension Rebecca.Maden@uvm.edu

Growing Our Own Nitrogen: Results from On-Farm Trials in MA

Katie Campbell-Nelson, UMass Ryan Karb, Many Hands Farm Corps, MA

December 14th, NEVFC, Manchester, NH

Goals

 Measure when nitrogen is being released by cover crops in relation to cash crop growth stages on different farms.

• Reduce nitrogen and phosphorus fertilizer use.

Methods

Three treatments

- 1. No Cover Crop
- 2. Rye (70lbs/A) and Vetch (20lbs/A)
- 3. Farmer Choice
 - With and without 60lbsN/Ac after incorporation

Timeline

- Sept. 2016: Plant cover crops.
- Sept. 2016 May 2017: Collect % cover data monthly.
- May 2017: Collect above ground biomass and incorporate cover crops.
- May July: collect soil nitrate every 2 weeks up to 8 weeks after incorporation.
- Two weeks after incorporation: apply additional 60lbsN/ac to split plots.
- Four Weeks after incorporation: Plant cash crop
- End of season 2017: Collect yield data.

What we know now

Nitrogen in Aboveground Covercrop Biomass

\$ Value of N per acre from Cover Crops

	No Cover (weeds)	Rye Vetch \$90/Ac	Farmer Choice
\$4.00/Lb N organic Chilean Nitrate	\$21 - 147	\$155 - 553	\$91-375
\$0.85/lb N conventional Urea	\$4-26	\$33-118	\$19-85

Farmer Choice cover crop seed cost = \$51 – 308/acre

Farm	Farmer Choice (lbs/acre) and \$/acre	Cash Crop and N needs (lbs/acre)	Fall 2016 % SOM and (ppm NO ₃)	Soil Type	Method of incorporation
UMass	Rye (60), Vetch (20), Tillage Radish (5) \$ 96	Sweet corn (100-130)	1.7 (20)	Winooski silt loam	flail mow, moldboard plow
	N	/lay 22, 2017	(and the second
RV					
RV	A A A A A A A A A A A A A A A A A A A			\$ 14 A	

THE PROPERTY AND A DECEMBER OF THE PROPERTY AND A DECEMBER OF THE PROPERTY AND A DECEMBER OF THE PROPERTY AND A

UMass Soil Nitrate

UMass Yield

NC + N RV + N

FC + N

UMass: Sweetcorn Yield doz/A*

Cover Crop and Nitrogen Treatments

* A 'Good' yield for sweetcorn is 750-1,500 doz/A and for cabbage is 20,000-40,000 lbs/A according to the New England Vegetable Management Guide.

Twin Oaks Yield

Twin Oaks: Cabbage Yield lbs/A*

Cover Crop and Nitrogen Treatments

Farm	Farmer Choice (lbs/acre) and \$/acre	Cash Crop and N needs (Ibs/acre)	Fall 2016 % SOM and (ppm NO ₃)	Soil Type	Method of incorporation		
	Oat (90), Pea (50),	Winter	6.8	Charlton-	flail mow,		
Langwater	Vetch (40)	Squash	(105)	Paxton fine	chisel plow,		
	\$308	(110-140)	(105)	sandy loam	disc harrow		
Way 26, 2017							

Langwater Soil Nitrate

Farm	Farmer Choice (Ibs/acre) and \$/acre	Cash Crop and N needs (Ibs/acre)	Fall 2016 % SOM and (ppm NO ₃)	Soil Type	Method of incorporation
Tangerini	Oat (90), Crimson clover (15), Vetch (18) \$205	Chard (105-130)	3.4 (30)	Merrimac fine sandy loam	flail mow, rototill, perfecta

May 26, 2017

FC

Farm	Farmer Choice (Ibs/acre) and \$/acre	Cash Crop and N needs (Ibs/acre)	Fall 2016 % SOM and (ppm NO ₃)	Soil Type	Method of incorporation
Lyonsville	Fria rye (15), Crimson clover (15), Vetch (18) \$136	Winter Squash (110-140)	2.9 (25)	Occum fine sandy loam	rotary mow, plow, disc
April 12,	2017 FC				

Farm	Farmer Choice (lbs/acre) and \$/acre	Cash Crop and N needs (Ibs/acre)	Fall 2016 % SOM and (ppm NO ₃)	Soil Type	Method of incorporation
Many Hands	Summer 2016 seeded: Sorghum Sudan (90) \$234 Spring 2017 Seeded: Oat (100), Pea (100) \$251	Cabbage (160)	6.2 (5)	Pootatuck fine sandy loam	disced twice
September					May 23, 2017
			NC FC	RV	

Farm	Farmer Choice (Ibs/acre) and \$/acre	Cash Crop and N needs (lbs/acre)	Fall 2016 % SOM and (ppm NO ₃)	Soil Type	Method of incorporation
Langwater	Oat (90), Pea (50), Vetch (40) \$308	Winter Squash (110-140)	6.8 (105)	Charlton- Paxton fine sandy loam	flail mow, chisel plow, disc harrow
Many Hands	Summer 2016 seeded: Sorghum Sudan (90) \$234 Spring 2017 Seeded: Oat (100), Pea (100) \$251	Cabbage (160)	6.2 (5)	Pootatuck fine sandy loam	disced twice

Langwater vs. Many Hands

Many Hands: Cabbage Yield lbs/A

Many Hands Yield

Farmer Adaptations

- Transplants 4 weeks after incorporation.
- Direct seed 2 weeks after incorporation.
- Experiment with less nitrogen fertilizer.
- Take more soil Nitrate tests

Thanks!

- **Thanks to Farmers:** Steve Chiarizo, Laura and Charlie Tangerini, Edwin and Joe Matuszko, Andrew Lawson, Kevin O'Dwyer and crew, Ryan Karb, and Maria Topitzer.
- **Thanks to staff and advisors:** Genevieve Higgins, Michele Meder, Julie Stultz-Fine, Samantha Glaze Corcoran, and Masoud Hashemi, Kate Parsons, Paul Peckham

