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ABSTRACT. Precision irrigation with sensors has proven to be effective for water saving in crop production. Internet of 
things (IoT) system is necessary for monitoring real-time data from sensors and automating irrigation systems. Long-
range wide-area network (LoRaWAN) is low-cost and easy to be implemented in IoT systems that can be used for 
precision crop irrigation. In this study, an IoT-based precision irrigation system with LoRaWAN technology was 
developed and evaluated as a precision management tool on fresh-market tomato production in an open field. Four 
irrigation scheduling treatments were designed and tested, including ET (ETc), MP60 (Watermark 200SS-5 soil matric 
potential sensors, -60 kPa), MP40 (-40 kPa), and GesCoN (decision support system). The treatments were arranged based 
on a randomized complete block design (RCBD) with four replications. System feasibility, yield, and irrigation water use 
efficiency (iWUE) were evaluated during the experiment. The results indicated that treatment MP60 and GesCoN had a 
marketable yield 15.2% and 22.1% higher than ET, respectively. MP40 had a marketable yield 12.5% lower than ET. 
GesCoN had a significantly higher yield than ET and MP40. However, MP60 did not produce significantly different 
results from GesCoN and ET but had higher yield than MP40. MP40 received relatively low water via irrigation because 
of unproper installation and positioning of the soil moisture sensors, which caused a higher incidence of blossom end-
rot and thus lower marketable yield. Nevertheless, the LoRaWAN-based IoT system worked well in terms of power 
consumption, communication, sensors reading and valve control. It can be potentially implemented for precision and 
automatic irrigation operation in vegetable fields. 
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1. Introduction 

In the United States, agriculture is a major consumer of ground and surface water, accounting for 
approximately 80% of the nation’s consumptive water use, and this percentage can be higher in the 
western states characterized by a dryer climate (USDA-ERS, 2019). As the global population continues 

The authors are solely responsible for the content of this meeting presentation. The presentation does not necessarily reflect the official position of the 
American Society of Agricultural and Biological Engineers (ASABE), and its printing and distribution does not constitute an endorsement of views 
which may be expressed. Meeting presentations are not subject to the formal peer review process by ASABE editorial committees; therefore, they are 
not to be presented as refereed publications. Publish your paper in our journal after successfully completing the peer review process. See 
www.asabe.org/JournalSubmission for details. Citation of this work should state that it is from an ASABE meeting paper. EXAMPLE: Author’s Last 
Name, Initials. 2021. Title of presentation. ASABE Paper No. ---. St. Joseph, MI.: ASABE. For information about securing permission to reprint or 
reproduce a meeting presentation, please contact ASABE at www.asabe.org/copyright (2950 Niles Road, St. Joseph, MI 49085-9659 USA).1 



ASABE 2021 Annual International Meeting Page 1 

to increase, food-crop production is expected to increase dramatically while water resources are 
increasingly limited (Howell, 2001; Di Gioia, 2018). Therefore, it is very important to use water 
efficiently, especially for crops such as vegetables, characterized by shallow roots and relatively high 
water content, and thus very sensitive to water stress. Water can be in excess or deficit, and thus 
irrigation water management can substantially impact vegetable yield and quality (Shock, 2007; Poh, 
2011). Conventionally, farm managers determine when and how much to irrigate vegetable crops based 
on their experiences and often varies by their time availability, which may not be optimal leading to 
inefficient water usage and crop yield and quality reduction either by over-irrigating or under-irrigating. 
Precision irrigation is defined as a modern irrigation management strategy that allows growers to avoid 
plant water stress at critical growth stages by applying only the necessary amount of water directly to 
the crop, varying rate and duration as needed based on site-specific conditions (Casadesus, 2012). By 
applying precision irrigation on agricultural crops, farmers are expected to benefit from lower cost of 
irrigation water and manpower, and improvement of crop yield and quality. Adoption of precision 
irrigation for crop production systems requires the development of integrated sensing, decision-making 
strategies, and control systems, eventually to precisely control the timing, rate and distribution of water 
as needed (Smith and Baillie, 2009). 

The application of irrigation can be related to soil, plant, or weather (Romero et al., 2012). Different 
sensor systems and technologies have been investigated and tested for precision irrigation, including 
evapotranspiration (ET)-based, plant-based, and soil moisture-based systems (Pardossi and Incrocci, 
2011). ET-based irrigation requires a complete set of weather parameters from a nearby weather station 
or a Class A pan evaporimeter to estimate the ET rate (FAO, 1998; Di Gioia et al. 2009). For plant-
based irrigation, canopy temperature is usually used as an indicator to schedule irrigation based on plant 
infrared thermal response to water status (Conaty et al., 2012). Sap flow, as a plant parameter, is also 
used to schedule irrigation (Fernandez et al., 2008). Among these methods, soil moisture sensor-based 
precision irrigation has been widely tested and used in vegetable fields and protected culture systems. 
Soil volumetric water content (VWC) and soil matric potential (MP) are two indicators for available 
water in the soil which can be used to implement soil moisture-based irrigation systems (Osroosh et al., 
2016). VWC is the ratio of water volume and soil volume with a unit of percentage or m3/m3. MP 
describes the force with which soil matrix holds water (Bianchi et al., 2017). MP measures the required 
energy for water movement in the soil which is always a negative number with a unit of kPa. In this 
study, the soil moisture-based irrigation method was used throughout the experiments. Based on 
preliminary study, the soil MP sensors can fit the IoT systems better and showed sensitivity to variations 
of soil moisture for vegetable irrigation. Thus, MP sensors were selected over VWC sensors in this 
study. 

Wired or wireless sensor network is one of the key technologies for precision and automated irrigation 
systems. Vellidis et al. (2008) developed and evaluated a real-time smart sensor array which measured 
soil moisture and temperature for scheduling cotton irrigation. In similar research, a microcontroller 
was used to provide real-time feedback control for a drip-irrigation system, toggling system control 
valves to apply water under the appropriate conditions (Prathyusha and Suman, 2012). Different 
embedded control technologies have been applied for automated irrigation systems, such as Xbee-PRO 
technology (Ramya et al., 2012), GSM Bluetooth-based remote-control systems (Gautam and Reddy, 
2012), and Dual Tone Multiple Frequency (DTMF) signaling (Dubey et al., 2011). Coates and Delwiche 
(2009) developed a mesh network system for wireless valve controllers and sensors to limit power 
consumption in addition to controlling water usage. Applications for mobile phones and wireless 
personal digital assistants (PDAs and “tablets”) have been developed to enable access to remote sensor 
data and control over physical irrigation systems from a distance (Ahmed and Ladhake, 2011; Sumeetha 
and Sharmila, 2012). 

Internet of Things (IoT), which was coined as a term in 1999 by Kevin Ashton, is a combination of 
networked sensors and machines for capturing, transmitting, managing, and analyzing data. Firstly, the 
data from sensors are uploaded wirelessly to a server. Then data are available on the internet for analysis 
and computing. Finally, the server sends commands wirelessly to the actuators for executing tasks. A 
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project called SWAMP tested the effect of their IoT-based irrigation system at four pilot locations in 
Brazil, Italy and Spain (Kamienski et al., 2019). Goap et al. (2018) developed an IoT-based smart 
irrigation management system with machine learning algorithm to improve irrigation control.  

Various wireless technologies in IoT systems have been investigated for crop irrigation management, 
such as Wi-Fi, cellular network (GPRS, LTE), ZigBee, and LoRaWAN. Zhao et al. (2017) compared 
the performance of Wi-Fi, ZigBee, GPRS, and LoRaWAN for irrigation systems. The results indicated 
that Wi-Fi and ZigBee had low coverage and only worked for the vegetable fields near to the gateway. 
GPRS is good for long-distance communication, but it has high-power consumption, and high cost of 
maintenance and deployment. LoRaWAN technology has a maximum range of 10 km with low power 
consumption and low-cost, which could allow for affordable precision irrigation systems for small 
farms. This technology was originally published in 2015 by LoRa Alliance, a non-profit association 
supporting the LoRaWAN protocol (LoRa Alliance, 2015); however, it is still not widely used in 
precision irrigation systems. To the best of knowledge, the LoRaWAN based system has been proposed 
for vegetables, but has not been tested under field conditions. 

Therefore, the primary goal of the present study was to develop an effective IoT-based precision 
irrigation system using LoRaWAN technology for vegetable production. Different irrigation treatments 
were established to evaluate the performance of the soil moisture sensor-based irrigation strategies, and 
the functionality and robustness of the IoT system. 

Specific objectives were: 
1. to develop a LoRaWAN technology-based IoT wireless sensing network system for precision 

irrigation for vegetable irrigation, 
2. to conduct the functionality evaluation on the irrigation system in terms of data communication, 

irrigation execution and power consumption, and 
3. to evaluate the efficacy of the developed IoT-based precision irrigation system at field scale using 

fresh-market tomato as a test crop and comparing the MP sensor-based, ETc-based, decision support 
system-based irrigation scheduling. 

It is hypothesized that for vegetable fields often located at distance from the farm center, and thus far 
away from an internet connection-point such as a gateway, LoRaWAN could be a good choice for the 
wireless technology in IoT-based irrigation. By using a LoRaWAN IoT-based precision irrigation 
system, vegetable farmers will rationalize and optimize the irrigation management saving water and 
improving crop yield, and irrigation water use efficiency (iWUE). 
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2. Methodology 

2.1 Experimental setup 

To achieve the proposed goal and objectives, an open field irrigation management study was 
conducted at the Horticultural Research Farm of the Penn State Russell E. Larson Agricultural Research 
Center (Furnace, PA) during 5/21/2020 – 9/23/2020. The soil type in the experiment field was silty clay 
loam with 13.5% of sand, 47.8% of silt, and 38.8% of clay. The soil pH was 6.5. Contents of phosphate, 
potash, magnesium, and calcium were 156, 266, 521, and 3203 lb/A, respectively. Total nitrogen and 
carbon soil content were 0.13% and 1.13%, respectively. The content of ammonium nitrogen was 2.34 
mg/kg. 

Fresh-market tomatoes (Solanum lvcopersicum L.) cv. Red Deuce F1 (HM Clause, Davis, CA) were 
used as the test crop. Seedlings were planted at the 4th true-leaf stage on May 21st, 2020 on raised beds 
mulched with black polyethylene film served by a single drip tape per bed. Beds were 0.91 m wide and 
2.13 m away from each other, and plants were planted at in-row distance of 0.46 m, establishing a 
density of 1.03 plants m-2. The 16 mm in diameter drip tape had emitters spaced 0.30 m and had a flow 
rate of 1 L/h per emitter at 55 kPa (T-Tape, Rivulis Irrigation Ltd. San Diego, CA). Plants were trellised 
using the stake and Florida weave method (Di Gioia et al., 2016) and the crop was managed according 
to local practices using an integrated pest management approach. A view of the open field experiment 
is shown in Figure 1. 

 
Figure 1. View of the open field irrigation experiment. 

Four treatments using different irrigation scheduling were designed and tested. Between 0 and 34 
days after transplanting (DAT), the whole irrigation system and IoT system were tested, and the 
irrigation was the same for four treatments during this period. The treatments started on 36 DAT. 
Treatment 1 (standard control, denoted ET) was based on crop evapotranspiration (ETc) and consisted 
of irrigating the crop with a volume equivalent to 100% of the ETc estimated on daily basis using a dual 
crop coefficient model according to FAO Paper 56 (FAO, 1998). Irrigation was applied after reaching 
12 mm of cumulative water deficit on average. Treatment 2 and 3 were based on soil matric potential 
(MP) sensors (Watermark 200SS-5, Irrometer company, Inc., Riverside, CA) at different setpoints of -
60 kPa (denoted MP60) and -40 kPa (denoted MP40), respectively. Once the average sensor readings 
at 20 cm depth reached the thresholds, the IoT system would send a notification and valves were 
manually controlled through the IoT system interface. The irrigation durations for the MP60 and MP40 
were determined by monitoring the sensor readings in the pre-tests, and some adjustments were made 
during the experiment according to the response of the sensors at 20 and 40 cm soil depth, which were 
on average 114 and 117 min between 36 and 66 DAT, 177 and 151 min between 67 and 83 DAT, and 
285 and 241 min between 84 and 125 DAT, respectively. Treatment 4 (denoted GesCoN) was based on 
recommendations provided by a decision support system (DSS) named GesCoN. When irrigation was 
needed, the system would send the suggestion of irrigation volume and time. GesCoN is a model based 
DSS developed by researchers at the University of Foggia (Italy) to estimate crop N and water 
requirements and manage fertigation in open field grown vegetables (Elia and Conversa, 2015) and 
calibrated on tomatoes (Conversa et al. 2015). Using the real-time, historic, and forecasted local weather 
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data, the basic information on soil (soil texture and mineral content), the specific crop (species, variety, 
planting date, planting density, estimated production), on the area of the field and on the irrigation 
system (drip tape flow rate and distance between drippers) the GesCoN integrates water balance, plant 
growth, and nitrogen uptake sub-models to estimate crop dry matter production, crop yield, 
evapotranspiration, soil moisture, drainage flow, soil nitrogen dynamics, and nitrate leaching and 
provides recommendations on irrigation and N fertigation. The DSS GesCoN has been integrated with 
the web-application Ecofert (www.ecofert.it) and an Android App (Ecofert). The DSS can be connected 
to weather stations using the RESTful API method to automatically retrieve real-time on-site or location 
specific climate data (Gallardo et al. 2020). 

All treatments received N fertilizer via fertigation at the same time, in the same form and amount 
according to the recommendations provided by GesCoN as reported in Table 1. 

Table 1. Fertigation dates, fertilizer and application rates recommended through GesCoN over the entire growing season. 

Date GesCoN suggested fertilizer N% 
Applied N  
(kg ha-1) 

6/26/2020 Urea 46 18 

6/30/2020 Urea 46 30 

7/15/2020 Urea 46 30 

7/21/2020 Urea 46 19 

 Calcium nitrate 15.5 8 

7/31/2020 Urea 46 14.5 

  Calcium nitrate 15.5 9.5 

Total N applied   129 

The layout of the field is shown in Figure 2. The overall field (planting area) was 27.74 m × 42.67 m 
in dimension. The field was constituted by 12 raised beds 42.7 m long. Three beds constitute a block, 
and each block was divided into 4 sections, each hosting an irrigation strategy treatment. Overall, the 
field was divided into 16 experimental units of the same size. Each experimental unit was constituted 
by three beds about 9.14 m long. Twenty plants were placed in each bed, for a total of 60 plants per 
experimental unit. Treatments were arranged in a randomized complete block design (RCBD) with four 
replicates for each. Four treatments were randomly distributed in each block. 

 
Figure 2. Experimental setup and the locations of the sensors and dataloggers. 

An irrigation system was setup in the field, connecting irrigation pipelines, solenoid valves, pressure 
sensors, soil MP sensors and data loggers (DL). Six data loggers were used to connect the sensors and 
valves, including one for valves (DL 1), four for soil MP sensors (DL 2~5), and one for pressure sensors 
(DL 6). DL 1 connected to four valves. DL 2, 3, 4, and 5 connected to four soil MP sensors of treatment 
ET, MP60, MP40, and GesCoN, respectively. DL 6 connected to four pressure sensors. The detail of 
sensors, datalogger, and valves are introduced in the following sections. 

2.2 Irrigation system setup 

Figure 3 shows the structure of the irrigation system, including pipelines, valves, pressure sensors, 
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flow meters, and other accessories. The water was supplied from the main water line of the farm. The 
main irrigation line after a screen filter was divided into four pipelines, one for each treatment. Four 
latching DC solenoid valves (PGV Series 2.54 cm, Hunter Inc., San Marcos, CA) were installed at the 
beginning of each line, followed by the pressure sensors (0.64 cm 5V 0-1.2 MPa) installed one per line 
behind the solenoid valves to measure the water pressure. The pressure indicated the status of the valves. 
The pressure regulators (241 kPa) behind the pressure sensors limited the water pressure reaching the 
following components. The flow meters measured the cumulative flow volume during the experiment. 
The fertigation system constituted by a by-pass with a Venturi injector was used to apply fertilizers 
when recommended by the DSS GesCoN. When fertigation started, the injector was opened first, then 
the switch in the pipeline was closed. When fertigation ended, the switch in the pipeline was opened 
first, then the injector was closed. The pressure gauges were used to measure the real-time water 
pressure and calibrate pressure sensors. The last components were pressure regulators at 103 kPa, which 
is the suggested pressure for the irrigation drip-tape lines used. Drip tapes were placed underneath the 
mulch for each section. Then the drip lines on the same treatment were connected to the pipes in the 
field pathway. Finally, these pathway pipes were connected to the corresponding pipelines (2.54 cm) 
for each treatment. 

 
Figure 3. The schematic of the overall irrigation system setup with one treatment irrigation pipeline as an example. 

2.3 Sensor system setup 

As indicated earlier, in total six data loggers were used in the system. The major components of the 
data loggers included a base control board (Vinduino LLC, Temecula, CA) and a LoRaWAN wireless 
communication unit with antenna (LM130-H1, GlobalSat WorldCom Corp., New Taipei City, Taiwan). 
Each data logger was powered by 3.7 V lithium-ion polymer (LiPo) battery, and a solar panel (70 mm 
× 70 mm) was connected to charge the battery. DL 1 and 6 used 10000 mAh batteries and Data loggers 
2~5 used 5000 mAh batteries. In each treatment, four soil MP sensors (Watermark 200SS-5, Irrometer 
company, Inc., Riverside, CA) were used. Figure 4 shows the connection of the soil MP sensors to the 
data loggers. 
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(A) (B)  
Figure 4. Connection of soil MP sensors with the data logger. (A) schematic illustration. (B) connection with the datalogger 

In each treatment, the sensors were installed in two experimental units and at two depths (20 cm, 40 
cm). During the installation, a soil sampler was used to dig a cylinder hole at 40 cm depth. Then, two 
soil MP sensors, which were soaked in water for 24 hours before installation, were placed in the hole. 
The original soil was back filled, and water was added to ensure the close contact between the sensors 
and soil. The average soil MP of two experiment units at 20 cm was used for starting the irrigation in 
the treatments MP60 and MP40. The sensors at 40 cm were used as a reference to check whether the 
water went down to the depth when the irrigation ended. The sensors installed in treatments ET and 
GesCoN were used only for monitoring the soil moisture levels.  

In each treatment pipeline, a pressure sensor was installed behind the solenoid valve to indicate the 
valve status (on or off). The sensors were calibrated with the pressure gauges installed on the same line. 
By adjusting the opening of the ball valve, eleven pairs of pressure sensor readings and pressure gauge 
readings from 0 to 207 kPa were used to calibrate the pressure sensor. Figure 5 shows the connection 
of the pressure sensors to the data loggers. 

(A) (B)  
Figure 5. Connection of pressure sensors with the data logger. (A) schematic illustration. (B) connection with the datalogger 

2.4 Valve control 

DC latching solenoid valves were used to control irrigation by connecting and disconnecting the 
water supply. Figure 6 shows the connection of valves and the data logger. The Vinduino board 
originally supports only one valve. For using it to control four valves, the sensor ports on the board 
were used to extend the capability. Sensor ports can send high/low signal at 3.3/0 V, but the current is 
not enough for executing the valves. To use the battery voltage (Vbat, 3.7 ~ 4.2 V) as power of the 
valves, four 2-way relays were added for the valve control. Two sensor ports send high/low signals to 
the IN1 and IN2 port of the 2-way relay to change electric potential at OUT1 and OUT2. High or low 
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of IN corresponds to Vbat or 0V of OUT. OUT1 and OUT2 connect to the positive and negative 
electrode of the valve, respectively. When IN1/IN2 is high/low, the valve will open. When IN1/IN2 is 
low/high, the valve will close. When IN1/IN2 is the same or no input, the valve will not respond. 

(A)  (B)  
Figure 6. Connection of valves with the data logger. (A) schematic illustration. (B) connection with the datalogger 

2.5 IoT system and data collection 

An Internet of things (IoT) system was established to connect the sensors, valves, and data loggers 
in the field. A LoRaWAN gateway (Sentrius™ RG191, Laird) was placed in an office which was 150 
m away from the field. Figure 7 illustrates the procedure of the IoT system development. The gateway 
and data loggers were configurated in a free IoT server named The Things Network. Then an IoT 
platform AllThingsTalk (AllThingsTalk NV, Mechelen, Belgium) was used to store and display the 
sensor data and control the valves. 

 
Figure 7. Structure of the experimental IoT system. 

The first step was to configure the gateway and the data logger. The LoRaWAN gateway was first 
connected to a computer with Wi-Fi for matching the parameters, including using “The Things 
Network” as server and “915MHz” as band frequency. In the server interface, a gateway was created 
with the recorded gateway ID. Then an “Application” was built in the gateway to represent the proposed 
tomato field irrigation system. An Application Extended Unique Identifier (EUI) of the application was 
generated automatically by the server. Six devices were created under the “Application” to connect the 
six data loggers, respectively. They shared the same Application EUI while had unique App Keys. 
Algorithms were developed for these data loggers with different functions, including soil MP recording, 
valve control, and water pressure recording. The Application EUI and App Key were used for the data 
loggers to be connected to the gateway for uploading data (sensor data) and downloading data (control 
signal). Once the data loggers were powered, they were connected to the server after a few seconds. 

The next step was to transmit the data to the AllThingsTalk IoT platform and process the data. In the 
web-based interface, integration “AllThingsTalk” was added to the created application. Then the IoT 
platform was linked to the server The Things Network. Sensor data was uploaded and stored in the IoT 
platform for monitoring and irrigation control. In the platform, six “devices” were added corresponding 
to the six data loggers. Then the “assets” were created in the “devices” to represent the corresponding 
sensors or valves in each data logger. The data communication frequency was applied with a pre-set 
time interval, which was 1 minute. The sensor data (uplink) and valve control (downlink) were 
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communicated as binary payload. Each value, such as the battery voltage, sensor reading, and valve 
status was parsed from a byte between 0 and 255. These were converted to actual values by editing the 
payload format in the “devices” interface. The valves can be separately controlled to turn on or off 
through the IoT platform. 

For DL 1, the battery voltage, valve status, and valve control switch were shown in the AllThingsTalk 
display. And for DL 2~6, the real-time sensor readings and battery voltages were displayed. The historic 
data of sensors and batteries were stored and can be exported in a comma-separated values (CSV) file. 
The status of all assets of six devices could be displayed to a pinboard (Figure 8). The status of the 
solenoid valves was shown by a circle indicator with black color for close and green color for open. 
The valves could be controlled by inputting a number between 0 and 15 in the textbox. The soil MP 
sensor readings were compared with the pre-set threshold, and a notification (Figure 9) can be sent by 
email or mobile application when the threshold is reached. However, full automation was not applied 
for the irrigation, instead a manual control through the IoT platform was used to start and end irrigations. 
The major reason was that there was signal loss occasionally on the farm which may lead to delayed 
response of valves with automatic setting. 

 
Figure 8. Sensor data display and irrigation valve control on the IoT platform. 

 
Figure 9. The notification of the IoT platform on its mobile application. 

2.6 Harvest, yield components, and Irrigation water use efficiency 

2.6.1 Yield 
At harvest, ten continuous representative tomato plants were selected from the middle row of each 

experimental unit. Tomatoes ranging from mature green to ripe red in color were harvested on 8/7, 8/19, 
9/1, 9/11, and 9/23/2020 in correspondence of 78, 90, 103, 113, and 125 days after transplanting (DAT), 
respectively. The experiment ended with the last harvest on 125 DAT. Harvested tomatoes were sorted 
into marketable and unmarketable fruit, and marketable fruit were graded into several size categories: 
extra-large (d > 6.99 cm), large (6.35 cm < d ≤ 6.99 cm), medium (5.72 cm < d ≤ 6.35 cm), and small 
(5.40 cm < d ≤ 5.72 cm), according to the U.S. Standards for Grades of Fresh Tomatoes (USDA, 1997). 
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Fruit number and fresh weight were recorded for each category. 

2.6.2 Irrigation water use efficiency 
Water usage was recorded after the last harvest by reading the flow meter. Water usage was measured 

by treatment and assumed to be the same for the four replications. Irrigation water use efficiency 
(iWUE) was calculated dividing the marketable fruit fresh weight by the total water usage. 

2.7 Statistic analysis 

The data of the of the IoT system between 6/25/2020 (35 DAT) and 9/23/2020 (125 DAT) was 
downloaded from the IoT platform AllThingsTalk. Data loss rate was calculated by the numbers of 
signals received divided by the expected numbers of signals received. Each data logger’s and the 
average data loss rate was calculated. Each data logger’s battery voltage, the soil MP sensor readings, 
weather data including solar radiation, rainfall, and air temperature during the experiment were 
processed using Microsoft Excel and presented in figures. 

Analysis of variance (ANOVA) was applied to fruit fresh weight and iWUE for four different 
treatments and four different blocks. These statistical analyses were performed using PROC GLM 
procedure in SAS 9.4 (SAS Institute Inc., Cary, NC, USA., 2016). All means were compared by the 
least significant difference (LSD) test at P ≤ 0.05. 

3. Results and Discussion 

3.1 Feasibility of the IoT system 

3.1.1 Data loss in communication 
The system generally worked well during 35 - 125 DAT. There were a few occasions of data loss in 

the IoT system. Six data loggers had similar data loss rate and the average data loss rate was 5.51 % 
(Figure 10). The gateway was placed inside a building about 150 m away from the field, which may 
have led to some signal loss. This can be improved if the gateway is installed outside with less occlusion. 
Meanwhile, the disconnection of any component such as the gateway, the server The Things Network, 
and the IoT platform AllThingsTalk can contribute to the signal loss. However, since data were uploaded 
at high frequency every minute, and there was no long period of data loss, the sensing system was not 
affected significantly. A few continuing data loss for more than 10 minutes was observed. If the 
irrigation was applied during these periods, it is possible that the valves would not respond on time. 

 
Figure 10. Signal loss rate of six data loggers during the experiment. 
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3.1.2 Battery 
The batteries in the six data loggers were charged by solar panels and maintained sufficient power 

throughout the three-month experiment period. Figure 11 shows the voltage of these batteries over time. 
On 103 and 114 DAT there was voltage drop for all data loggers due to the continuing cloudy and rainy 
weather. A disconnection of the solar panel wires occurred for the data logger 3 between 60 and 70 DAT, 
resulting in an obvious voltage drop compared with other time period. Overall, the battery voltages 
during the experiment were always higher than 4 V, which showed that the 5000 mAh LiPo battery with 
solar panel could support a data logger continuously in the open field. 

 
Figure 11. Battery voltage of six data loggers during the experiment 

3.1.3 Valve control 
During the experiment, the irrigation was applied successfully by controlling the status of the 

solenoid valves with the implemented IoT system. When the soil moisture threshold was reached, the 
platform sent a notification through the mobile application and an email to the end-user. Then the 
operator turned the corresponding valves on, and the irrigation started. When the valves were opened, 
the status of the valves were showing “Green” in the IoT interface, and the pressure of the water line 
was indicated with a positive reading. When the valves were closed after certain hours of irrigation, the 
valve status was showing “Black”, and the reading of the pressure sensors returned to zero. It was also 
observed that, the valve status changed to “Green” while the pressure sensor reading did not change 
accordingly. In this situation, the valve did not actually open with pressure water going through. In other 
words, the pin in the solenoid did not respond even if the signal was received by the controller. By 
sending the signal several times, the valves did finally open or close. This can be attributed to the clog 
in the solenoids or small voltage for powering the valves (4 V). In the future, a higher voltage (9 V) can 
be used to improve the response of the valve. Meanwhile, remote control with manual operation was 
used in the experiment, for a fully automatic irrigation system, the start and end of an irrigation will be 
programed into the controller according to the soil moisture thresholds. 

3.2 Soil moisture monitoring 

Figures 12-15 shows the daily average soil MP sensor readings, rainfall, and irrigation of four 
treatments between 35 and 125 DAT. Generally, the sensor readings presented the changes of the soil 
moisture level in the test field. When irrigation or rainfall happened, the sensor readings were 
increasing. The soil at 40 cm were generally dryer than the soil at 20 cm. It indicated that the irrigation 
did not drain the soil at 40 cm depth completely. Sometimes the sensors at 40 cm had no response after 
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the irrigation, suggesting the irrigation volume was not enough and the water could not reach the depth 
of 40 cm. 

For treatment ET (Figure 12), most sensor readings were higher than -100 kPa. The sensor reading 
did not respond consistently because the irrigation was based on ETc, and the sensor readings were not 
considered. The readings of MP 1-1 were usually lower than MP 1-2 (treatment 1-ET, the second sensor 
installation place), which might be caused by uneven soil texture and hydraulic properties. The place 
where MP 1-2 was installed tended to get wetter than MP 1-1. 

 
Figure 12. Daily average soil MP sensor readings, rainfall, and irrigation of treatment ET during the experiment 

For the treatment MP60 (Figure 13), the sensor readings were all above -140 kPa throughout the 
experiment.  When the average sensor reading at 20 cm reached -60 kPa, the irrigation was applied. 
Thus, the daily average readings of sensors at 20 cm were usually above -60 kPa during the experiment. 
However, between 35 and 55 DAT, MP 2-1 20 cm continuously got dryer, which was abnormal since 
there was irrigation. A new sensor was installed to replace that one at a near position, and the readings 
of the new sensors were consistent with the other sensors. Before the replacement, the irrigation was 
based on MP 2-2 20 cm only. There were two possible reasons for this abnormality. One possible 
explanation is that the position where the sensor was installed might have a dryer condition. A second 
explanation could be that the sensor was not in close contact with the soil. The volume of each irrigation 
was adjusted according to the sensor response during the experiment. The sensor readings of MP 2-2 
40 cm kept low between 65 and 72 DAT but returned to higher level after irrigation on 72 DAT. This 
indicated that the irrigation volume was not enough during this period. Thus, the water could not reach 
the 40 cm depth. After 85 DAT, the irrigation depth was increased to over 10 mm each time. At this 
point, the response of the four sensors became more consistent.  
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Figure 13. Daily average soil MP sensor readings, rainfall, and irrigation of treatment MP60 during the experiment. 

For the treatment MP40 (Figure 14), all the sensor readings were above -120 kPa during the 
experiment. When the average sensor reading at 20 cm reached -40 kPa, the irrigation was applied. 
Thus, the daily average sensor readings at 20 cm were usually above -40 kPa. The sensor response kept 
consistent between 35 and 125 DAT, and all the sensors showed a high reading compared with other 
treatments. However, the total irrigation volume was much less than other treatments. In the field, 
treatment MP40 was dry during the experiment and tomato plants were more stressed because of lack 
of water. This outcome indicated that the sensor readings did not show the real condition of treatment 
MP40. A possible reason could be variations of soil texture within the experimental field. The sensors 
of each treatment were installed at only two positions, and the two positions were not far from each 
other because the wire of the sensors was only 5 m long and they needed to connect to the same data 
logger. Meanwhile, the position where the sensors were installed was wetter than the average condition 
of treatment MP40. Thus, the sensors readings of treatment MP40 showed wetter readings than the 
actual soil moisture level, making the irrigation not adequate.  
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Figure 14. Daily average soil MP sensor readings, rainfall, and irrigation of treatment MP40 during the experiment. 

For treatment GesCoN (Figure 15), most sensor readings were above -140 kPa. Two sensors at MP 
4-2 continuously dropped between 70 and 80 DAT and between 100 and 110 DAT. The drip tapes of the 
area where the sensors were installed was found disconnected during that period, and the area did not 
get any irrigation. However, this issue affected only one of the guard rows from which tomatoes were 
not harvested. Therefore, the issue did not affect the results. However, the issue could be detected by 
monitoring the sensors, which suggests that integrating the use of soil moisture sensors with GesCoN 
could provide some benefits. 
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Figure 15. Daily average soil MP sensor readings, rainfall, and irrigation of treatment GesCoN during the experiment. 

Figure 16 shows the sensor readings around an irrigation event of treatment MP60 at 77 DAT. The 
irrigation was based on the average of two sensor readings at 20 cm. When the average readings reached 
-60 kPa at 18:50, the notification was sent, and the valve was opened remotely. The increased water 
pressure readings showed that the water was on. The sensor readings increased in 30 minutes and 
stopped increasing in about 2 hours. Sensors at 40 cm and at the first installation position responded 
first. Commonly, water reached 20 cm first, then 40 cm. But the sensors were not close to the drip tapes, 
and the irrigation water spread in both vertical and horizontal direction to reach the sensors. For this 
reason, sometimes the irrigation water reached the 40 cm sensors first. At 22:20, the irrigation ended, 
and the water pressure readings went back to 0. Before the irrigation, the sensors readings at 20 cm 
were near -60 kPa, and the sensor readings at 40 cm were at -100 and -140 kPa. During the irrigation, 
all the sensor readings increased to above -20 kPa, and sensors at 40 cm were still dryer than sensors at 
20 cm. After the irrigation, the readings of MP 2-1 40 cm decreased a little, and then became higher. 
The possible reason is the water flowed through the area and that the soil was not evenly moist just after 
irrigation. Sensors at 40 cm would become dryer faster than sensors at 20 cm. 
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Figure 16. Soil MP sensors and pressure sensor readings of treatment MP60 during an irrigation event on 77 DAT. 

3.3 Fruit yield components 

Tomato fruit yield components were recorded at each harvest for all four treatments. Table 2 shows 
the cumulative fruit fresh yield determined cumulating the yield after each harvest. MP60 was not 
significantly different from ET and GesCoN for most yield components. However, MP60 had more 
large fruit fresh weight than ET until the last harvest, more unmarketable weight than GesCoN until the 
3rd, 4th, and 5th harvest, and more marketable and total weight than ET until the 4th harvest. Comparing 
MP40 with ET, MP40 had lower extra-large fruit fresh weight than ET until the 3rd harvest, lower 
marketable yield than ET until the 2nd, 3rd, and 4th harvest, and lower total yield than ET until the 3rd 
and 4th harvest but more total yield in the 1st harvest since there was a high proportion of unmarketable 
fruit. MP60 and GesCoN had a total marketable yield 15.2% and 22.1% higher than ET, respectively. 
MP40 had a marketable yield 12.5% lower than ET. MP60 was not significantly different from ET and 
GesCoN. However, MP40 had significantly lower marketable yield than MP60 and GesCoN but was 
not significantly different from ET. MP60 and MP40 are sensor-based irrigation using different soil 
moisture levels of thresholds. MP40 was expected to be wetter than MP60, thus, it was expected to 
suffer less water stress and potentially have more yield. However, as mentioned in the soil moisture 
monitoring section, MP40 used less water than other treatments, presumably because of improper sensor 
positioning or positioning of the sensors in an area that was not representative of the entire field, which 
led to lower yield. Nevertheless, the results of MP60 shows the sensor-based irrigation scheduling with 
the IoT system is effective and suitable for precision irrigation management at field scale. 

Table 2. Irrigation strategies effects on fresh-market tomato cumulative yield and yield components until each harvest. 

Harvest Day Treatment Fruit Fresh Weight (Mg ha-1) 

XL L M Cull TMY TY 

78 

ET 3.68 0.70 0.23 2.03 b 4.62 6.65 b 

MP60 4.13 0.71 0.09 1.43 b 4.92 6.34 b 

MP40 4.21 0.74 0.26 3.48 a 5.21 8.69 a 

GesCoN 4.70 0.78 0.15 1.48 b 5.62 7.09 b 

 P-value 0.69 0.92 0.30 0.001 0.68 0.03 

until 90 

ET 15.92 a 0.85 0.29 9.03 ab 17.06 a 26.09 

MP60 17.35 a 1.03 0.09 6.32 b 18.47 a 24.79 

MP40 12.70 b 1.01 0.42 11.71 a 14.13 b 25.84 

GesCoN 16.92 a 0.94 0.15 7.73 b 18.01 a 25.74 
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 P-value 0.03 0.71 0.08 0.03 0.03 0.90 

until 103 

ET 34.00 b 1.53 0.40 21.32 a 35.93 b 57.25 a 

MP60 37.42 ab 2.36 0.32 18.58 a 40.11 ab 58.68 a 

MP40 24.45 c 1.44 0.42 21.72 a 26.31 c 48.03 b 

GesCoN 40.35 a 2.44 0.34 14.82 b 43.13 a 57.94 a 

 P-value 0.002 0.11 0.89 0.003 0.001 0.01 

until 113 

ET 40.37 b 1.98 0.64 24.39 ab 43.00 b 67.38 b 

MP60 47.21 ab 3.55 0.45 22.20 b 51.22 a 73.42 a 

MP40 29.66 c 2.07 0.47 25.61 a 32.21 c 57.82 c 

GesCoN 50.19 a 3.18 0.58 18.31 c 53.95 a 72.26 a 

 P-value 0.0008 0.16 0.87 0.001 0.0004 0.0005 

until 125 

ET 46.35 bc 4.52 b 3.34 25.73 ab 54.21 bc 79.95 ab 

MP60 52.71 ab 6.46 a 3.26 23.66 b 62.43 ab 86.09 a 

MP40 38.16 c 5.43 ab 3.75 27.49 a 47.34 c 74.83 b 

GesCoN 56.72 a 5.95 a 3.52 20.00 c 66.19 a 86.20 a 

  P-value 0.01 0.04 0.66 0.002 0.01 0.06 

XL = Extra-Large, L = Large, M = Medium, Cull = Unmarketable, TM= Total marketable, T = Total 
Treatments are grouped by LSD t-test if they are significantly different. 

3.4 Irrigation water use efficiency (iWUE) 

Table 3 shows the total water usage per area and iWUE of four treatments. Treatment MP40 used 
much less irrigation water compared with other treatments, leading to the low yield. ET, MP60, and 
GesCoN had similar irrigation volume. MP60, MP40, and GesCoN had 19.2%, 25.7%, and 27.7% 
higher iWUE than ET. MP60 was not different from the other treatments. However, MP40 and GesCoN 
had significantly higher iWUE than ET. Considering the lack of yield in MP40, its high iWUE is not an 
advantage. 

Table 3. Total irrigation water usage per area and irrigation water use efficiency (iWUE). 

Treatment  Volume (m3 ha-1) iWUE (kg m-3) 

ET 2440 22.22 b 

MP60 2357 26.49 ab 

MP40 1695 27.94 a 

GesCoN 2339 28.38 a 
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4. Conclusion 

An IoT-based precision irrigation system with LoRaWAN technology was developed and evaluated 
in the study. In general, the system worked well for the irrigation application in an open tomato field. 
The batteries for the data loggers were charged sufficiently by the attached solar panels. A series of data 
were recorded and displayed for the soil matric potential sensors and pressure sensors. Irrigation was 
applied successfully by controlling the solenoid valves based on the soil moisture level. Even though 
no significant negative effect was observed in the sensor data monitoring and valve control, the IoT 
system had a data loss rate of 5.5% in average, which may be attributed to the indoor gateway placement 
and disconnection of each component in the network. High frequency of data communication (every 
minute) mitigates this problem. Meanwhile, it was observed a couple of times that the valves did not 
respond with the first sent signal, which may be caused by the low voltage power used for the valves. 
The fruit yield and irrigation water use efficiency were analyzed and compared for all four treatments. 
MP40 used much less irrigation volume than other treatments because of improper installation position. 
Other three treatments used similar irrigation volumes. MP40 has less yield. For the other three 
treatments, considering the yield and iWUE, GesCoN was the best, followed by MP60 and ET. However, 
there was no significant difference between MP60 and other two treatments. According to the results of 
MP60, the developed IoT-based system using LoRaWAN technology can be potentially used for 
precision and automatic irrigation application for practical vegetable production. 
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