

The Effects of Organic Grass and Grass-Birdsfoot Trefoil Pastures on Jersey Heifer Development: Heifer Growth, Performance and Economic Impact

Journal:	Journal of Dairy Science
Manuscript ID	JDS.2020-19524.R2
Article Type:	Research
Date Submitted by the Author:	09-Apr-2021
Complete List of Authors:	Hadfield, Jacob; Utah State University, Animal, Dairy and Veterinary Science Waldron, Blair; USDA-ARS Forage and Range Research Laboratory Isom, S.; Utah State University, Animal, Dairy and Veterinary Science Feuz, Ryan; Utah State University, Applied Economics Larsen, Ryan; Utah State University, Applied Economics Creech, J.; Utah State University, Plants, Soils, and Climate Rose, Marcus; USDA-ARS Forage and Range Research Laboratory Long, Jennifer; Utah State University, Applied Science, Technology, and Education Miller, Rhonda; Utah State University, Applied Sciences, Technology, and Education Rood, Kerry; Utah State University, Animal, Dairy and Veterinary Sciences Young, Allen; Utah State University, Animal, Dairy, and Veterinary Sciences Stott, Rusty; Utah State University College of Agriculture and Applied Sciences, Animal, Dairy and Veterinary Sciences Sweat, Alexis; Utah State University, Animal, Dairy and Veterinary Science
	dairy hiefer, organic, pasture

SCHOLARONE[™] Manuscripts

11	Running title: Heifer Performance on Pasture
12	The Effects of <mark>Organic</mark> Grass and Grass-Birdsfoot Trefoil Pastures on Jersey Heifer
13	Development: Heifer Growth, Performance and Economic Impact
14	Jacob A. Hadfield ¹ , Blair L. Waldron ² , S. Clay Isom ¹ , Ryan Feuz ³ , Ryan Larsen ³ , J. Earl
15	Creech ⁴ , Marcus F. Rose ⁴ , Jenny Long ⁵ , Rhonda L. Miller ⁵ , Kerry A. Rood ¹ , Allen Young ¹ ,
16	Rusty Stott ¹ , Alexis Sweat ¹ and Kara J. Thornton ¹ *
17	¹ Animal, Dairy, and Veterinary Sciences Department, Utah State University, Logan, UT 84322-
18	4815, USA
19	² Forage and Range Research Laboratory, USDA-ARS, Logan, UT 84322–6300, USA
20	³ Agricultural Economics Department, Utah State University, Logan, UT 84322-4820, USA
21	⁴ Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA
22	⁵ Applied Sciences, Technology, and Education Department, Utah State University, Logan, UT
23	84322-2300, USA
24	
25	*Corresponding author: kara.thornton@usu.edu

27 ABSTRACT

Dairy heifers developed in certified organic programs, especially those utilizing pasture-28 based management schemes, have lower rates of gain than heifers raised in non-organic 29 confinement production systems in temperate climates, such as in the Intermountain West region 30 of the US. This study investigates the effects that different forages in a rotational grazing system 31 have on development of organically raised Jersey heifers. Over three years, 210 yearling Jersey 32 heifers were randomly assigned to one of nine treatments, including a conventional confinement 33 control where animals were fed a total mixed ration or one of eight pasture treatments: Cache 34 35 Meadow bromegrass (Brumus riparius Rehmann), QuickDraw orchard grass (Dactylis glomerata L.), Amazon perennial ryegrass (Lolium perenne L.), or Fawn tall fescue (Schendonorus 36 arundinaceus [Schreb.] Dumort) and each individual grass interseeded with birdsfoot trefoil 37 (Lotus corniculatus L., **BFT**). Each treatment had three blocks per year over the three year 38 period with each block having a 0.4 ha pasture of each treatment. Every 35 d, over a 105 d 39 period, heifers were weighed, measured for hip height, and blood samples were collected to 40 determine serum insulin-like growth factor-1 and blood urea nitrogen concentrations. Fecal egg 41 counts were also assessed. Heifer body weights (**BW**), blood urea nitrogen, and insulin-like 42 43 growth factor-1 concentrations were affected by treatment when analyzed over time. Heifers on grass-BFT pastures had increased BW compared to heifers on monoculture grass pastures. 44 Heifers receiving a total mixed ration or perennial ryegrass+BFT had increased BW gain over 45 46 the 105 d period compared to heifers grazing tall fescue+BFT, orchard grass, perennial ryegrass, meadow bromegrass, or tall fescue. Whereas, individually for all grass species, heifers grazing 47 48 +BFT pastures had greater ending BW and weight gain than heifers grazing the respective grass 49 monocultures. Furthermore, weight gain for heifers on perennial ryegrass+BFT, meadow

bromegrass+BFT, and orchard grass+BFT were not different from those on a total mixed ration. 50 Heifers grazing grass-BFT pastures had increased blood urea nitrogen compared to heifers 51 grazing monoculture grass pastures. Heifer hip-height and fecal egg counts were not affected by 52 treatment. These results show that the addition of BFT to organic pasture improves growth of 53 grazing replacement heifers. Economic analyses also demonstrate that interseeding grass 54 55 pastures with BFT results in an increased economic return compared to grazing monoculture grass pastures. Grass pastures interseeded with BFT may be a sustainable option to achieve 56 adequate growth of Jersey heifers raised in an organic pasture scenario in a temperate climate. 57 58 **Key Words:** Jersey heifer, organic, pasture, birdsfoot trefoil 59

60

ee perez

INTRODUCTION

62	Replacement heifer management is critical to maintain profitability in dairy operations.
63	However, the cost of raising replacement heifers is the second largest expense incurred by
64	dairies, only behind feed costs (Tozer and Heinrichs, 2001, Boulton et al., 2017). It is important
65	that dairy heifers achieve appropriate growth in order to ensure maximum profitability and
66	productivity. Previous research has demonstrated that pre-pubertal growth rates greater that 0.80
67	kg/d in Holsteins result in a reduction in first lactation milk production (Zanton and Heinrichs,
68	2005). In contrast, Holstein calves with lower growth rates, between 0.40 and 0.56 kg/d, are
69	older at both puberty and calving (Raeth-Knight et al., 2009, Rincker et al., 2011). Many
70	producers are able to grow their heifers at a rate within these margins by utilizing a conventional
71	feed system that consists of delivering a total mixed ration (TMR) in a confined area allowing
72	for control of nutrient intake (Hoffman et al., 1996, Tozer et al., 2003). While efficient, this
73	method can be costly and producers welcome new strategies and alternatives to confined feeding.
74	Additionally, organic producers must follow strict regulations, including a pasture requirement.
75	As such, modern research aimed at finding ways to diminish expenses that do not negatively
76	impact production, while still following organic requirements, is desired by producers (McBride,
77	2010).
70	Dequirements for arganic doinging, as actablished by the LICDA state that arganic

Requirements for organic dairying, as established by the USDA, state that organic
producers must let cattle graze pasture for the entire grazing season in their geographical region
with a minimum of 120 d (USDA-AMS, 2019), during which time 30% of the ruminant's dry
matter intake (**DMI**) must come from pasture. To accommodate this regulation, many organic
dairy producers feed a primarily pasture-based diet, which also helps reduce high organic feed
costs. However, producers who used the highest amount of pasture-based forage (75-100%) had

the lowest net returns due to a 32% decrease in milk yield (McBride, 2010). Additionally, there
is little research analyzing the effects of developing Jersey heifers on an organic pasture-based
system in a temperate climate with little rainfall such as that found in areas of the Intermountain
West region of the US.

To develop replacement heifers, pastures must provide nutrition that allows for adequate 88 89 weight gain and skeletal growth, maintain or enhance reproductive performance, and improve rumen utilization of nitrogen. Utilizing grass-legume mixtures in pasture could help achieve 90 these nutritional goals by supplying adequate amounts of herbage, energy, and protein. The 91 92 ability of legumes to fix atmospheric nitrogen, leads to increased protein content of the pasture helping to improve forage yield and quality without application of fertilizers. Tannin containing 93 legumes could also improve production of ruminants on pasture. Research has shown that 94 legumes containing tannins can increase nitrogen utilization in the rumen, decrease the incidence 95 of bloat, and act as a natural anthelmintic to decrease parasite load (Min et al., 2003, Patra and 96 Saxena, 2011). The use of legumes in grass pasture, especially those that contain tannins, could 97 positively influence performance of developing dairy heifers. Previous research from our group 98 indicates that grass pastures interseeded with birdsfoot trefoil (**BFT**), a tannin containing legume, 99 results in increased growth of beef steers (Waldron et al., 2020). Several other studies have 100 analyzed performance of dairy heifers on pasture in other regions (Macdonald et al., 2007, Roche 101 102 et al., 2015, Hayes et al., 2019), however no previous research has investigated the effects of 103 different organic pasture forages on development of Jersey heifers in a climate similar to that of the Intermountain West region of the US. As such, the objective of the present study was to 104 compare growth, health, and economic viability of Jersey heifers developed on an organic grass 105 106 monoculture pasture, an organic grass pasture interseeded with a tannin containing legume

107	(BFT), or a conventional confinement setting (non-organic). Our hypothesis states that Jersey
108	heifers developed on organic grass pasture interseeded with BFT will have improved growth,
109	health, and be more economically viable when compared to heifers developed on organic
110	monoculture grass pastures.
111	MATERIALS AND METHODS
112	All animal experiments were conducted following procedures approved by the
113	Institutional Animal Care and Use Committee (IACUC protocol #2777 and #10063) at Utah
114	State University. This study utilized 8 different pasture treatments and a TMR, for a total of 9
115	treatments. Each treatment utilized three blocks (pastures) per year over a three-year period
116	(2016, 2017, and 2018). A total of 210 yearling Jersey heifers were purchased from commercial
117	dairies (48 in 2016 from a single source, 81 in 2017 from a single source and 81 in 2018 from
118	two different sources). All heifers utilized in the study were registered Jersey and had similar
119	initial weights and birthdates. The experimental unit in the present study is pasture block. In
120	2016, two heifers were randomly allocated to one of three blocks in each pasture treatment and
121	in 2017 and 2018, three heifers were randomly allocated to one of three blocks in each pasture or
122	TMR treatment (n=9). In 2016, there were no Jersey heifers receiving a TMR, as such, the TMR
123	treatment has an n=6 and includes data collected in 2017 and 2018. In May of each year, heifers
124	were transported to the Intermountain Irrigated Pasture Project in Lewiston, Utah. Upon arrival,
125	heifers began a two-week grazing acclimation period to ensure heifers could adequately consume
126	forage from pastures. After the two-week transition period was completed, heifers were fasted
127	for 12 h in preparation for initial sampling. As heifers were sampled at d 0, they were randomly
128	assigned to one of three blocks within each pasture or TMR treatment.

129 Treatments and Pasture Information

144

formation The negtures utilized

in the present study have been described

130	Pasture Information. The pastures utilized in the present study have been described
131	previously (Rose et. al., 2021). In brief, this research was conducted at the Utah State University
132	Intermountain Irrigated Pasture Research Farm (41°57'01.85" North, 111°52'15.75" West, elev.
133	1,369 m, 46 cm annual precipitation and 56.1 precipitation days per year) located near Lewiston,
134	UT, USA. The soils at the site are a Kidman fine sandy loam (Coarse-loamy, mixed, superactive,
135	mesic Calcic Haploxerolls) and Lewiston Fine Sandy Loam (Coarse-loamy, mixed, superactive,
136	mesic Calcic Haploxerolls). The site is within the semiarid Central Great Basin region of the
137	western USA, characterized by hot, dry summers, and a majority of the annual precipitation as
138	snowfall. In this particular area (Cache county, Utah, USA), the precipitation from winter-time
139	snowfall is stored in reservoirs and used in the summer for irrigated crop production (Utah
140	Climate Center, 2018). Yearly precipitation and temperature data for 2016, 107 and 2018 are
141	presented in Rose et al. (2021).
142	Pasture Treatments. This study utilized eight different pasture treatments and a
143	confinement TMR control. The eight pasture treatments consisted of four monoculture grass

pastures and four mixed pastures. The four monoculture grasses used were: Cache Meadow

bromegrass (*Brumus riparius Rehmann;* **MB**), QuickDraw orchard grass (*Dactylis glomerata* L,;

146 **OG**), Amazon perennial ryegrass (*Lolium perenne* L.; **PR**), or Fawn tall fescue (*Schendonorus*

147 arundinaceus [Schreb.] Dumort; TF). Mixed pastures consisted of one of the four monoculture

grasses listed previously, mixed with BFT (MB+BFT, OG+BFT, PR+BFT, TF+BFT). All

149 heifers on pasture had access to water and a trace mineral supplement. Pasture treatments were

150 planted at the Intermountain Irrigated Pasture Project and were grazed for a 105 d period.

151 Three different blocks were utilized each year of the study with each block consisting of152 a 0.4 ha pasture of each treatment that was divided evenly into five 0.08 ha paddocks. Paddocks

153	were separated with a single strand of poly-wire charged by a battery powered fence charger.
154	Rotational stocking was used with a stocking period of 7 d, followed by a rest period of 28 d,
155	such that the entire rotation cycle was 35 d. Three full rotations occurred each year, giving
156	heifers a total of 105 d on pasture (20 June to 13 Oct., 2016 and 17 May to 30 Aug., 2017 and 16
157	May to 29 Aug., 2018). At the end of each 35 d rotation cycle, heifers were gathered and fasted
158	for 12 h for sample collection before resuming the next 35 d cycle.
159	This study was conducted using organic dairy grazing protocols, so no treatment
160	received commercial fertilizer However, as previously described by Rose et. al. (2021)
161	approved organic sources of nitrogen were applied to the treatments. Chilean nitrate (sodium
162	nitrate, 15-0-2, N-P-K) (SQM, Santiago, Chile) was applied at 28 kg N ha ⁻¹ in April to all
163	treatments (both monoculture and mixtures). In addition, grass monocultures also received a
164	second application of 28 kg N ha ⁻¹ of Chilean nitrate in July, and further received 35 kg N ha ⁻¹ in
165	the form of hydrolyzed poultry feathers in June 2017 and March 2018 (80% CP/6.25=12.8% N)
166	as a slow-release source of N. Paddocks were irrigated one week before grazing and within a
166 167	as a slow-release source of N. Paddocks were irrigated one week before grazing and within a week after grazing, so that pastures received 8.89 cm of water every 14-20 d. Precipitation data
167	week after grazing, so that pastures received 8.89 cm of water every 14-20 d. Precipitation data
167 168	week after grazing, so that pastures received 8.89 cm of water every 14-20 d. Precipitation data for the site Pasture samples were taken pre- and post-grazing to determine yield as well as
167 168 169	week after grazing, so that pastures received 8.89 cm of water every 14-20 d. Precipitation data for the site Pasture samples were taken pre- and post-grazing to determine yield as well as nutritional quality of the individual pasture. An in-depth analysis of pasture samples and DMI
167 168 169 170	week after grazing, so that pastures received 8.89 cm of water every 14-20 d. Precipitation data for the site Pasture samples were taken pre- and post-grazing to determine yield as well as nutritional quality of the individual pasture. An in-depth analysis of pasture samples and DMI has been previously reported (Rose et al., 2021). Table 1 shows the average nutritional quality
167 168 169 170 171	week after grazing, so that pastures received 8.89 cm of water every 14-20 d. Precipitation data for the site Pasture samples were taken pre- and post-grazing to determine yield as well as nutritional quality of the individual pasture. An in-depth analysis of pasture samples and DMI has been previously reported (Rose et al., 2021). Table 1 shows the average nutritional quality for each of the nine treatments found from the analyses of pasture samples as well as the TMR.

composition (DM basis) for 2017 was: 45% alfalfa haylage, 19% corn silage, 18% flaked corn 175 grain, 9% beet pulp shreds, and 9% wheat straw. The composition for the TMR in 2018 (DM 176 basis) was: 46% corn silage, 27% flaked corn grain, 22% alfalfa hay, and 5% wheat straw. Year 177 differences between TMR compositions were due to feed resource availability. For ease of 178 access to feeds and feed equipment, heifers receiving the TMR were moved from the 179 180 Intermountain Irrigated Pasture Project to the Caine Dairy Teaching and Research Farm in Wellsville, Utah. Control heifers were separated by block into three different pens, with three 181 heifers per pen. Control heifers were fed to achieve average daily BW gains similar to those 182 desired by local producers that develop dairy heifers. The TMR was fed daily at 0700, and 183 refusals were weighed, recorded, and discarded daily before feeding to determine intakes by 184 block. 185

Every 7 d, TMR samples were collected and stored at -20°C. After collecting TMR samples over the 35 d period, one full grazing rotation, TMR samples were mixed and a composite sample taken. The composite sample was then sent to Cumberland Valley Analytical Services (Waynesboro, PA, USA) for analysis. The TMR nutrition analyses, with the pasture treatment analyses, are shown in Table 1. Every 35 d, control heifers were gathered and fasted for 12 h prior to sample collection similar to the heifers receiving pasture treatments.

192 Sample Collection

Samples from heifers were collected at four different time points: d 0, d 35, d 70, and d 105. All heifers were fasted for 12 h before sample collection. Weight, hip height, blood, and fecal samples were taken from each heifer at each time point. Weights were taken via an electronic scale. A regular hip-height measuring stick (Sullivan Supply, Dunlap, IA, USA) was used to determine hip height. Blood samples were collected via jugular venipuncture, using red top tubes, and allowed to clot at room temperature for 30 min before being stored and

transported in a portable cooler. Fecal samples were collected in 50 mL conical tubes, put on ice,

and taken to the Utah Veterinary Diagnostic lab for analysis of FEC. Fecal samples from 2017

were analyzed using the Wisconsin Sugar Flotation Test (David and Lindquist, 1982) and the

- 202 2018 samples were analyzed using the McMaster Egg Counting Technique (Mines, 1977).
- 203 Serum Metabolite Profiling

After blood collection, tubes were stored at 4°C for 24 h. Blood samples were then centrifuged at 1000 rpm for 15 min. Serum was removed from blood samples and stored at -20°C for subsequent analysis of BUN and IGF-1. A commercially available colorimetric assay was used to detect BUN in duplicate (Invitrogen, Urea Nitrogen Colorimetric Detection Kit; ThermoFisher Scientific). Serum samples were analyzed for IGF-1 in duplicate using the Human IGF-1 Quantikine ELISA Kit (SG100; R&D Systems). This kit has been shown to have 100% cross-reactivity with bovine IGF-1 (Moriel et al., 2012).

211 Economic Analysis

For economic comparisons, the total establishment costs, net annual financial impact,

213 payback period, and breakeven organic premium of each treatment were calculated. The results

were benchmarked against a conventional replacement dairy heifer operation feeding a TMR in

215 confinement. The economic comparisons were made assuming the heifers were raised to a

weight of 250 kg., bred, fed/grazed an additional 30 d to allow for pregnancy checks, and then

subsequently sold as either open or bred conventional/organic heifers. All results were calculated

- assuming 100 animal units (AU), with an AU defined as a single Jersey heifer.
- 219 The total establishment costs for each pasture treatment were considered the initial
- 220 investment into the treatment. As the pasture treatments consist of perennial forage species, only

221	establishment costs of the first year were included. Establishment costs consisted of planting
222	costs and seed cost. The planting costs were based on a 150-horsepower tractor and 15-foot drill.
223	Planting costs consisted of repairs (\$8.33/hr.), fuel (\$13.20/hr.), lubrication (\$1.98/hr.), labor
224	(\$16.50/hr.), and planter costs (\$15.50/hr.). With 2.94 ha planted per hour, total planting costs
225	were \$23.62/ha for the monoculture treatments. Because the BFT mixed treatments were seeded
226	twice to assure proper seed depth of each species in the mix, costs associated with planting BFT
227	mixed treatments were assumed twice (\$47.24/ha) those of the monocultures. The seed costs
228	(\$/ha) ranged from \$66.68/ha (TF) to \$160.52/ha (OG+BFT), based on previously described
229	seeding rates (Rose et al., 2021). Planting and seed costs were combined to estimate the
230	establishment costs (\$/ha) for each of the treatments. Total establishment costs were calculated
231	as the product of the establishment costs per hectare and the estimated required hectares for each
232	pasture treatment. Mean herbage mass values from Rose et al. (2021) were used together with
233	predicted DMI using previously described equations to calculate the required number of hectares
234	for each treatment to produce the necessary feed assuming an 85% harvest efficiency (Saha et
235	al., 2010). The required number of hectares ranged on average from 6.5 ha (MB+BFT) to 16.6 ha
236	(PR).
237	The net annual financial impact was estimated using a partial budget. The partial budget
237 238	The net annual financial impact was estimated using a partial budget. The partial budget included decreases expenses from TMR feed savings, as well as increased expenses from
238	included decreases expenses from TMR feed savings, as well as increased expenses from
238 239	included decreases expenses from TMR feed savings, as well as increased expenses from fertilization, irrigation, and the opportunity cost of the pasture treatment (land rent). The partial
238 239 240	included decreases expenses from TMR feed savings, as well as increased expenses from fertilization, irrigation, and the opportunity cost of the pasture treatment (land rent). The partial budget did not include labor to move the heifers to new plots, set up the electric fence, irrigate,

the cost per kg DM of TMR (Utah prices were used to value the mixed ration) multiplied by the

244

kg saved through grazing the selected pasture treatment. The average cost per kg DM of TMR 245 for 2017 and 2018 was \$0.175. Assuming 7.31 kg DM/AU/day (TMR predicted DMI using the 246 equation as outlined by Saha et al. (2010)) over 113 d on feed (**DOF**) across 100 AU, the total 247 TMR feed savings would be \$14,456. This savings was assumed constant across all pasture 248 249 treatments. The DOF for each treatment and TMR were estimated using the ADG values for each treatment with a target weight to begin breeding of 250 kg (Duplessis et al., 2015, Heinrichs and 250 Jones, 2016). The DOF estimated for each treatment were then increased by 30 additional d in 251 252 the partial budget analysis to allow adequate time for pregnancy checks and subsequent sale of each heifer as either a short bred or open heifer. DOF ranged from 82.5 d (PR+BFT) to 130.6 d 253 (TF). The increased forage expense for each treatment was calculated as the product of total kg 254 of feed required [DOF x predicted DMI x 100 (AU)] and the forage value (\$/kg) calculated as 255 $FV_i = \frac{LR}{(HM_i * HE_i)}$ 1) 256 where FV_i is the calculated forage value ($\frac{k}{kg}$) for the *i*th pasture treatment, *LR* is the assumed 257 irrigated land rental rate (\$/hectare), HM_i is the pre-graze herbage mass (kg/ha for the *i*th pasture 258 treatment, and HE_i is the assumed harvest efficiency percentage (i.e., 85%) for the *i*th pasture 259 treatment. Forage value ranged on average from \$0.07/kg (PR+BFT) to \$0.14/kg (PR). 260 Additional increases to expenses arose from irrigation and the application of organic fertilizer. 261 Irrigation expenses were included at \$60.54/ha (Pace et al., 2019). The annual fertilizer expenses 262

for the selected pasture treatment were also included in the partial budget at a cost of \$9.26kgN

²⁶⁴ for the sodium nitrate and \$9.19kgN for the hydrolyzed poultry feathers. The final element of the

partial budget was increased or decreased income from sale of replacement heifers. Whether the

sale of replacement heifers represents an increase or decrease in income, as compared to a

confined feeding system, depends on the assumed difference in heifer conception rate as well as
the price premium placed on organic heifers. The equation used to calculate the net change in
income between grazing on selected pasture treatments as compared to feeding TMR in
confinement was

271 2)
$$\Delta I_i = (N_i * OP) + [N_i * \Delta C_i * (Pb - Po)]$$

where ΔI_i is the net change in income for pasture treatment *i*, N_i is the total number of 272 replacement heifers grazing the *i*th pasture treatment, ΔC_i is the change in conception rate for 273 heifers grazed on the *i*th pasture treatment as compared to heifers fed in a dry lot, *Po* and *Pb* are 274 the prices (\$/head) for open and bred conventional replacement heifers, respectively, and *OP* is 275 276 the organic price premium (\$/head). For all pasture fed heifers, a conception rate decrease of 5% as compared to dry lot fed heifers was assumed based on previous research demonstrating that 277 AI pregnancy rates tended to be lower for the grazing heifers as compared to the dry lot fed 278 279 heifers (Funston and Larson, 2011). In addition to this 5% reduction, the conception rate of monoculture grazed heifers was further reduced an additional 5% for a total 10% reduction as 280 compared to TMR fed heifers based on previous findings that decreased body weight gain prior 281 to breeding results in lower conception rates at first service (Hayes et al., 2019). Values of \$800 282 and \$400 per head for conventional replacement bred and open dairy heifers, respectively, were 283 284 used with an organic premium added of \$225 per head (average premium determined through discussion with local organic producers). 285 The payback period for each pasture treatment was calculated by dividing the total 286 establishment costs of each treatment by the annual net financial impact estimated using the 287

288 partial budget.

Page 18 of 48

289	The break-even organic premium was estimated as the premium required on the sale of
290	organic replacement dairy heifers necessary for the net financial impact of grazing a selected
291	pasture treatment (as compared to feeding TMR) to equal \$0.
292	Statistical Analysis
293	Data was analyzed by use of a randomized complete block design with nine different
294	treatments arranged into three blocks. Each block served as the experimental unit, where each
295	block is defined as the mean of the data collected from the individual heifers on that block; there
296	were two heifers on each of three pasture blocks in 2016 and three heifer on each of three pasture
297	block in both 2017 and 2018. In 2016, there were no heifers being fed a TMR in confinement.
298	All statistical analyses were done using the Proc Mixed statement of SAS® version 9.4 (SAS
299	Institute, Cary, NC). Two analyses were carried out in the dataset. Treatment was analyzed as a
300	fixed effect, comparing all nine treatments and the average values from heifers on each block
301	across the study. Pasture type, with (MIX) or without (MONO) BFT, was also analyzed ($n = 36$)
302	as a fixed effect, to determine if the presence of BFT in pasture influenced heifer growth and
303	development. Heifers receiving TMR were eliminated from the pasture type analysis. Measures
304	of heifer performance were analyzed within and across sampling days with block and year
305	included as random variables. For the across sampling days (e.g., grazing rotation cycles)
306	analyses, day was considered a repeated measure and the best covariance model was used for
307	each trait (mostly compound symmetry). Post-hoc mean comparisons with LSD adjustments
308	were completed to determine differences between individual treatments. Significance was
309	determined at $P \le 0.05$ for all comparisons. All values used for tables and figures are LSM.
310	RESULTS

311 Body Weight

Pasture Type. Heifer body weight (**BW**) was affected by both pasture type*day (P < P312 0.01) and day (P < 0.01) (Figure 1). Additionally, heifers who grazed MIX pastures tended (P =313 0.06) to have greater BW when compared to heifers that grazed MONO pastures (Figure 1). 314 Pasture type had no effect on heifer BW at d 0 or d 35 (P = 0.99, P = 0.17, respectively, Figure 315 1), but at d 70 and d 105 the heifers grazing MIX pastures had greater (P < 0.01) BW when 316 compared to heifers receiving MONO pasture (Figure 1). Over the 105 d period, heifer weight 317 gain also differed (P < 0.01) between MONO and MIX treatments, with heifers grazing MIX 318 319 pastures having greater weight gain compared to heifers grazing MONO pastures (0.60 kg/d vs. 0.49 kg/d respectively, data not shown). Taken together, these data indicate that heifers grazing 320 MIX pastures had greater BW and weight gain when compared to heifers grazing MONO 321 pastures. 322

Treatment. Heifer BW was affected by treatment*day (P < 0.01), treatment (P = 0.01), 323 and day (P < 0.01). Treatment had no effect on heifer BW on d 0 (P = 0.91) or d 35 (P = 0.14); 324 however, BW was impacted at d 70 (P < 0.01), and d 105 (P < 0.01). Additionally, over the 105 325 d period, there was a change (P < 0.01) in gain (Table 2). At d 70 and d 105, heifers receiving 326 TMR had greater (P < 0.05) BW compared to heifers grazing monoculture pastures (PR, OG, 327 MB, TF) and TF+BFT (Table 2). Similarly, heifers grazing PR+BFT had greater (P < 0.05) BW 328 329 at d 70 and 105 when compared to all monoculture pastures, with the exception of PR at d 70 330 (Table 2). Heifer weight gain over the 105 d period was greater (P < 0.05) for PR+BFT than all other treatments except heifers receiving TMR (Table 2). Heifers grazing TF had the lowest (P < P331 0.05) weight gains of all treatments (Table 2). Greater weight gains were observed for all +BFT 332 333 treatments, including TF+BFT, compared to their individual respective grass monocultures

(Table 2). Overall, these data demonstrate that heifers receiving TMR or mixed pastures had

335 greater BW and weight gains when compared to heifers grazing monoculture pasture grasses.

336 *Hip-Height*

337 There were no pasture type*day (P = 0.61) or treatment*day (P=0.65) interactions, nor was there an effect of pasture type (P = 0.16) or treatment (P = 0.42) on heifer hip-height (Table 338 339 3). Date of measurement was significant ($P \le 0.01$) with hip-height increasing over the course of the grazing season (Table 3). Total hip height gain over the 105 d grazing period was greater (P 340 = 0.05) in heifers grazing MIX pasture (Table 3); whereas, 105 d change in hip height among the 341 342 9 treatments only approached significance (P = 0.08) (Table 3). These data indicate that although pasture type did not alter hip-height over time, the heifers were indeed growing as the trial 343 progressed. 344

345 Blood Urea Nitrogen

Pasture Type. Heifer BUN concentrations were affected by pasture type*day (P < 0.01) 346 and pasture type (P < 0.01) when analyzed over time (Figure 2). At d 0 heifer BUN 347 concentrations did not differ (P = 0.20) between pasture types (Figure 2). However, heifers 348 receiving MIX pastures had greater (P < 0.01) BUN concentrations compared to heifers grazing 349 MONO pastures at d 35, d 70, and d 105 (Figure 2). These data indicate heifers grazing MIX 350 pastures had greater BUN concentrations when compared to heifers grazing MONO pastures. 351 *Treatment.* Heifer BUN concentrations were not affected by a treatment*day (P = 0.12) 352 interaction or day (P = 0.32), but treatment (P < 0.01) had an effect (Table 4). At d 0 heifer BUN 353 did not differ (P = 0.79) between treatments (Table 4). However, at d 35, d 70, and d 105 heifer 354 BUN concentrations differed (P < 0.01) between treatments (Table 4). At d 35, heifers receiving 355 PR+BFT, OG+BFT and TMR had greater (P < 0.05) BUN concentrations compared to heifers 356

357	grazing all monoculture treatments (PR, OG, MB, TF, Table 4). At d 70, heifers grazing
358	PR+BFT and OG+BFT had greater (P < 0.05) BUN levels compared to heifers grazing
359	monoculture treatments (OG, PR, MB, TF) and TF+BFT (Table 4). At d 105, BUN levels were
360	increased ($P < 0.05$) in heifers getting TMR, MB+BFT, PR+BFT, or TF+BFT when compared to
361	those grazing monoculture grasses. These data indicate that heifers receiving mixed pasture
362	treatments or TMR had greater BUN concentrations than heifers who grazed monoculture
363	pasture treatments.

364 Insulin-like Growth Factor-1

365 *Pasture Type.* Heifer serum IGF-1 concentrations were not affected by a pasture

type*day (P = 0.14) interaction, nor was a pasture type (P = 0.87) effect observed (Table 5).

367 These data indicate that heifer IGF-1 concentrations vary by day, but do not appear to be affected368 by the pasture type consumed.

Treatment. Heifer IGF-1 concentrations were not affected by a treatment*day (P = 0.23) 369 interaction but treatment (P < 0.01) and day (P < 0.01) were found to have an effect when 370 analyzed over time (Table 5). Heifer IGF-1 concentrations at d 0 did not differ (P = 0.85) by 371 372 treatment. However, at d 35, d 70, and d 105 heifer IGF-1 concentrations differed (P < 0.05) between treatments (Table 5). At d 35, heifers receiving TMR had greater (P < 0.05) IGF-1 373 concentrations compared to heifers who grazed monoculture pastures (PR, MB, OG, TF), 374 MB+BFT, OG+BFT and TF+BFT (Table 5). Similarly, heifers grazing PR+BFT, MB+BFT, and 375 OG+BFT had greater (P < 0.05) IGF-1 concentrations compared to heifers grazing TF. At d 70, 376 heifers receiving TMR had greater (P < 0.05) IGF-1 concentrations compared to heifers grazing 377 all other treatments, except for OG (Table 5). At d 105, heifers receiving TMR, MB or MB+BFT 378 had increased (P < 0.05) IGF-1 concentrations compared to heifers grazing TF or TF+BFT 379

(Table 5). Heifer IGF-1 concentrations were not significantly different (P < 0.05) between each 380 individual grass monoculture and its respective mixture with BFT. Taken together, these data 381 indicate heifers receiving TMR, OG, and PR+BFT commonly had greater IGF-1 levels than 382 heifers receiving other treatments.

Parasite Load 384

383

385 Fecal egg count data collected in the years 2017 and 2018 were analyzed separately as different methods to determine FEC were utilized each year. In both 2017 and 2018, a pasture 386 type*day interaction was not found (P = 0.88, P = 0.76, respectively) nor was a pasture type 387 388 effect (P = 0.28, P = 0.30, respectively) present when heifer FEC were analyzed over time (data not shown). However, heifer FEC was affected (P < 0.01) by day in 2017 and 2018 (data not 389 shown) such that FEC increased over time. Additionally, heifer FEC was not affected (P = 0.55, 390 P =0.93, respectively) by a treatment*day interaction in 2017 or 2018, nor was a treatment effect 391 (P = 0.32; P = 0.61, respectively) observed for either year (data not shown). However, a day 392 effect (P < 0.01) was observed for both years when analyzed over time such that FEC increased 393 over time (data not shown). These data indicate that there were no differences between 394 395 treatments on FEC of the heifers.

Effect of Time 396

BW, hip-height, and IGF-1 each changed (P < 0.01) over the 105 d sampling period 397 (Table 6). As expected, both BW and hip-height increased (P < 0.01) over time (Table 6). Day (P 398 < 0.01) influenced heifer IGF-1 concentrations (Table 6). Heifers sampled at d 105 had increased 399 (P < 0.05) IGF-1 concentrations when compared to heifers sampled at all other time points 400 (Table 6). Heifers sampled at d 0 had increased (P < 0.05) IGF-1 concentrations when compared 401

402	to heifers sampled at d 35 (Table 6). No effects ($P = 0.32$) of day were observed in BUN (Table
403	6).
404	Economic Results
405	<i>Pasture type.</i> The MIX pastures had an increased ($P < 0.05$) total establishment cost
406	when compared to the MONO pastures (Table 7). Additionally, MIX pastures had an increased
407	(P < 0.05) annual net financial impact and a lower $(P < 0.05)$ payback period when compared to
408	the MONO pastures (Table 7). The breakeven organic premium for MIX pastures was also lower
409	(P < 0.05) than that of MONO pastures (Table 7). These data indicate that although the
410	establishment cost is higher for MIX pastures, the economic return from developing dairy heifers
411	on a MIX pastures is much greater than utilizing a MONO pasture.
412	Treatment. When comparing the MONO grass pastures, the total establishment cost of
413	TF was lower ($P < 0.05$) than MB, OG and PR, while the total establishment cost of PR was
414	increased ($P < 0.05$) compared to TF, MB and OG (Table 7). Comparison of total establishment
415	costs among the MIX pastures showed that $OG + BFT$ was increased (P < 0.05) compared to all
415 416	costs among the MIX pastures showed that $OG + BFT$ was increased (P < 0.05) compared to all three of the other MIX pastures (Table 7). PR was the only MONO pasture that had an increased
416	three of the other MIX pastures (Table 7). PR was the only MONO pasture that had an increased
416 417	three of the other MIX pastures (Table 7). PR was the only MONO pasture that had an increased $(P < 0.05)$ total establishment cost when compared to TF + BFT and OG + BFT, but was
416 417 418	three of the other MIX pastures (Table 7). PR was the only MONO pasture that had an increased ($P < 0.05$) total establishment cost when compared to TF + BFT and OG + BFT, but was decreased ($P < 0.05$) compared to OG + BFT (Table 7). Comparison of the annual net financial
416 417 418 419	three of the other MIX pastures (Table 7). PR was the only MONO pasture that had an increased ($P < 0.05$) total establishment cost when compared to TF + BFT and OG + BFT, but was decreased ($P < 0.05$) compared to OG + BFT (Table 7). Comparison of the annual net financial impact among the MIX pastures showed that PR was lower ($P < 0.05$) than TF, MB and OG,
416 417 418 419 420	three of the other MIX pastures (Table 7). PR was the only MONO pasture that had an increased ($P < 0.05$) total establishment cost when compared to TF + BFT and OG + BFT, but was decreased ($P < 0.05$) compared to OG + BFT (Table 7). Comparison of the annual net financial impact among the MIX pastures showed that PR was lower ($P < 0.05$) than TF, MB and OG, while MB and OG were increased ($P < 0.05$) when compared to both TF and PR (Table 7). The
416 417 418 419 420 421	three of the other MIX pastures (Table 7). PR was the only MONO pasture that had an increased ($P < 0.05$) total establishment cost when compared to TF + BFT and OG + BFT, but was decreased ($P < 0.05$) compared to OG + BFT (Table 7). Comparison of the annual net financial impact among the MIX pastures showed that PR was lower ($P < 0.05$) than TF, MB and OG, while MB and OG were increased ($P < 0.05$) when compared to both TF and PR (Table 7). The annual net financial impact was not different ($P > 0.05$) among the MIX pastures, but the annual

increased (P < 0.05) in PR compared to all other pasture treatments, while MB, OG and TF were

425

increased compared to each of the MIX pastures (Table 7). There was no difference (P > 0.05) in 426 the breakeven organic premium when comparing each of the MIX pastures (Table 7). Taken 427 together, these data demonstrate that interseeding a grass pasture with BFT results in an overall 428 increased economic return, however there are no real differences noted between the different 429 430 grasses interseeded with BFT. **DISCUSSION** 431 Monitoring growth of dairy heifers is important as heifers must reach approximately 55% 432 of their mature **BW** at breeding by 13 to 15 mo of age allowing for a target age of first calving at 433 22 to 24 mo to be reached (Akins, 2016, Hayes et al., 2019). An age of first calving beyond 24 434 mo results in increased rearing costs stemming from increased days on feed an ultimately 435 decreased producer profitability (Pirlo et al., 2000). The present study found that on average, 436 Jersey heifers grazing MIX pastures had greater BW gain than heifers on MONO pastures. All 437 heifers were weighed after a 12 h fast demonstrating that differences in weight were not due to 438 differences in gut fill. The increased BW gain of heifers grazing MIX pastures could be due to 439 the fact that grass+BFT pastures had increased ME and/or CP when compared to grass 440 441 monoculture pastures (Rose et al., 2021). To the knowledge of the authors, no other grazing studies have been conducted using Jersey heifers in the Intermountain West region of the US on 442 organic pastures. However, in a study utilizing beef heifers, Waldron et al. (2020) reported that 443 444 beef steers grazing TF+BFT had greater BW gain than those grazing TF monocultures. In

another study conducted in the Southern region of the US, it was found that bred Holstein heifers

grazing native big bluestem and indiangrass had increased ADG compared to heifers grazing

switchgrass, but no effects on ADG were observed when these grasses were interseeded with the

448	legume red clover (Lowe et al., 2016). In another similar grazing study looking at Holstein
449	heifers, it was reported that heifers grazing legume mixed pastures (alfalfa or BFT) had greater
450	ADG (12-17% increase) compared to heifers grazing grass pastures (Barker et al., 1999). Taken
451	together, the results of these studies demonstrate that there are conflicting results on whether
452	inclusion of legumes in pastures impact growth of grazing heifers. However, the research
453	presented by Waldron et al. (2020) and the present study were both performed in a similar region
454	using non-organic or organic practices, respectively, and found interseeding grass pastures with
455	BFT resulted in increased weight gain when grazed by growing beef steers or Jersey heifers. The
456	differences in results from some of the other previously reported studies could be due to
457	differences in breed (Holstein vs. Jersey), the type of grass (warm season vs. cool season)
458	utilized in the research, or that the pastures utilized in the present study were treated organically.
459	Additionally, the results of the present study demonstrate that Jersey heifers receiving
460	TMR had greater weight gains than all grass MONO pastures (PR, OG, MB, TF), but had similar
461	BW gains to heifers grazing mixed pastures. These data indicate that animals grazing organic
462	mixed pastures in the Intermountain West region of the US are capable of gaining as well as
463	those receiving a non-organic TMR. Previous research has found that 7 mo old beef heifers fed
464	TMR diets reached puberty 29 d younger than heifers grazing on dormant native pastures with
465	no supplement (Marston et al., 1995). However, heifers grazing on pasture that received a 20%
466	CP supplement had similar weights at breeding as heifers in a dry lot (Marston et al., 1995).
467	Although Marston et al. (1995) did not look at the effects of including legumes, which have a
468	higher CP than grasses, their data demonstrates that heifers consuming grass plus additional CP
469	results in similar weight gain to those receiving a TMR. Taken together, the results of the present
470	study, and those of others, demonstrate that high-quality grasses interseeded with BFT, or

another source of CP, result in overall heifer BW gains similar to those fed a TMR. As such,
organic grass-BFT mixed pastures are a sustainable alternative to feeding a TMR in a confined
setting and should be considered a viable option for sustainable ruminant production on pasture
in regions such as the Intermountain West.

However, in addition to BW gain, it is also important that producers analyze structural 475 476 growth of their heifers to ensure that heifers are growing structurally and not just putting on fat. Hip height is often used as a measurement for producers to determine structural growth of 477 heifers. In the present study, heifer hip height was only affected by d of measurement, with 478 479 increasing hip height throughout the grazing season indicating that no treatments had nutrient deficiencies that severely restricted body growth. Previous research providing Holstein heifers 480 with either high forage (75% DM) or high concentrate (75% DM) found no difference in 481 structural growth, but also did not see a difference in ADG, likely because DMI was matched 482 between the two different treatment (Zanton and Heinrichs, 2007). The study by Zanton and 483 Heinrichs (2007) analyzed two different diets with much more variable nutrient composition than 484 the diets utilized in the present study and also observed no difference in hip-height, but DMI was 485 matched between the two diets. Another study found that increasing CP:ME ratio in the diet of 486 487 Holstein heifers resulted in increased hip height (Gabler and Heinrichs, 2003). The CP:ME ratio in the present study likely did not vary enough to result in alteration in hip height. 488

Legumes have an increased CP concentration when compared to grasses. One physiological measure of protein intake is concentration of BUN. Research has shown that concentrations of BUN above 20 mg/dL may be detrimental to reproductive performance (Ferguson et al., 1988, Ferguson et al., 1993, Rajala-Schultz et al., 2001). As such, in the present study we wanted to ensure that Jersey heifers grazing the pastures interseeded with BFT did not

494	have a BUN exceeding this level. In the present study, concentrations of BUN were greater in
495	heifers that grazed MIX pastures or received a TMR compared to those consuming MONO
496	pasture. However, it is important to note that none of the BUN values exceeded 20 mg/dL and
497	the greatest BUN concentration reported in the present study was 16.3 mg/dL. In another study
498	analyzing the influence of green grass-based diets it was found that diet had no effect on BUN
499	concentration of crossbred dairy heifers (Habib et al., 2018). It was also found that increasing
500	dietary concentrates in growing Holstein heifers resulted in a linear increase in BUN
501	concentration (Zhang et al., 2018). However, studies done in lactating Jersey and Holstein cows
502	grazing grass pasture have found that BUN levels stayed between 16-19 mg/dL, which is similar
503	to our research findings (Kolver and Macmillan, 1994, Roche et al., 2005). Holstein cows put on
504	grass pastures fertilized with 40-50 kg N/ha reached BUN levels of over 60 mg/dL (Ordonez et
505	al., 2007). In the present study, less N fertilizer (28-37 kg N/ha) was applied to monoculture
506	pastures, with CP contents across all treatments ranging from 8-19%, which is much lower than
507	the previously cited studies and could be a reason why much lower BUN levels were reported.
508	Additionally, no previous research has analyzed BUN levels of Jersey heifers grazing organic
509	pastures.
510	The differences between heifer BUN concentrations from our research compared to the
511	previously mentioned studies may also be due to the effect of CT from BFT. Condensed tannins

512 have the ability to bind protein in the rumen, thus decreasing the amount of circulating urea in

the animal (Min et al., 2003, Patra and Saxena, 2011). However, Rose et al. (2021) reported that

- 514 CT levels among our research pastures ranged from 0.5-7.5 g CT/kg DM, whereas Min et al.
- 515 (2003) reported that CT concentrations of 20-45 g CT/kg DM were ideal in reducing rumen
- 516 forage protein degradation. Thus, CT from BFT may have had an effect on our heifer BUN

517	concentrations, but probably didn't result in as great a reduction of BUN as we originally
518	hypothesized due to the low levels of CT in our BFT. The lower concentration of BUN found in
519	this study could have also been influenced by sampling after a 12 h fast, since BUN
520	concentrations reach their peak four to six hours postprandial (Butler, 1998). Other data suggests
521	that the optimal time to measure BUN in lactating cows was between 3 to 8 h after feeding, with
522	4 h after feeding being the optimal time (Hwang et al., 2001). More research needs to be
523	conducted in Jersey heifers grazing organic pastures to determine how different pasture forages
524	may impact BUN levels.
525	Serum IGF-1 levels may be an indicator of energy balance, but are not necessarily an
526	indicator of overall nutrient balance (Kolver & Macmillan, 1994). In the present study, Jersey
527	heifer IGF-1 concentrations did not differ between animals grazing MIX pastures or MONO
528	pastures. Although heifers grazing MIX pastures had increased weight gain compared to those
529	consuming MONO pastures, no difference in circulating IGF-1 concentration was observed.
530	However, our results indicate that IGF-1 concentrations from heifers receiving a TMR (the
531	numerically highest ADG observed) were higher than heifers who received TF (the numerically
532	lowest ADG observed) throughout the study. Additionally, other research has found that
533	polymorphisms in the IGF-1 gene are related to growth of Holstein-Friesian heifers (Siadkowska
534	et al., 2006, Mullen et al., 2011). Previous research in beef steers has analyzed the effects that
535	different levels of energy and protein (Low Protein, Low Energy: 1.96 ME/kg & 8% CP vs.
536	Medium Protein, High Energy: 2.67 ME/kg & 11% CP) have on plasma IGF-1 and found that
537	diet composition and intake influence plasma IGF-1 levels such that steers receiving medium
538	protein and high energy diets had increased IGF-1 levels compared to steers receiving low
539	protein and low energy diets (Elsasser et al., 1989). These researchers suggested that while CP

540	may be responsible for basal IGF-1 levels, the actual IGF-1 response to diet may be more
541	affected by available metabolizable energy (Elsasser et al., 1989). Similarly, in a study focusing
542	on the effects of negative energy balance on the GH axis in lactating Holstein-Friesian cows, it
543	was found that severe negative energy balance affected hepatic synthesis of IGF-1 (Fenwick et
544	al., 2008). Previous research findings demonstrate that IGF-1 can be an indicator of energy
545	balance (Elsasser et al., 1989, Fenwick et al., 2008, Kolver & Macmillan, 1994). However, in the
546	present study the TMR had a numerically lower energy value than the TF pasture, despite the
547	fact that the heifers receiving TMR had increased ADG compared to those grazing TF. These
548	data do not match previous findings that increased energy increases circulating IGF-1 (Elasser et
549	al., 1989, Fenwick et al., 2008). However, the CP in the TMR was increased compared to the TF
550	pasture, which indicates that our results might more closely match dietary CP as opposed to
551	energy. This data demonstrates that research on ruminant IGF-1 plasma concentrations on
331	
552	pasture is scarce; more research is needed to determine the relationship between ruminant serum
552	pasture is scarce; more research is needed to determine the relationship between ruminant serum
552 553	pasture is scarce; more research is needed to determine the relationship between ruminant serum IGF-1 concentrations and pasture type, specifically of Jersey heifers grazing organic pastures.
552 553 554	pasture is scarce; more research is needed to determine the relationship between ruminant serum IGF-1 concentrations and pasture type, specifically of Jersey heifers grazing organic pastures. The addition of BFT to pastures did not have any effect on Jersey heifer FEC in the
552 553 554 555	pasture is scarce; more research is needed to determine the relationship between ruminant serum IGF-1 concentrations and pasture type, specifically of Jersey heifers grazing organic pastures. The addition of BFT to pastures did not have any effect on Jersey heifer FEC in the present study. Studies have found that CT from BFT can decrease FEC in ruminants (Min et al.,
552 553 554 555 556	 pasture is scarce; more research is needed to determine the relationship between ruminant serum IGF-1 concentrations and pasture type, specifically of Jersey heifers grazing organic pastures. The addition of BFT to pastures did not have any effect on Jersey heifer FEC in the present study. Studies have found that CT from BFT can decrease FEC in ruminants (Min et al., 2003). It has also been found that lambs grazing forages that contained CT had a reduction in
552 553 554 555 556 557	pasture is scarce; more research is needed to determine the relationship between ruminant serum IGF-1 concentrations and pasture type, specifically of Jersey heifers grazing organic pastures. The addition of BFT to pastures did not have any effect on Jersey heifer FEC in the present study. Studies have found that CT from BFT can decrease FEC in ruminants (Min et al., 2003). It has also been found that lambs grazing forages that contained CT had a reduction in FEC (Niezen et al., 1998). Other research has suggested that BFT may reduce FEC in dairy
552 553 554 555 556 557 558	pasture is scarce; more research is needed to determine the relationship between ruminant serum IGF-1 concentrations and pasture type, specifically of Jersey heifers grazing organic pastures. The addition of BFT to pastures did not have any effect on Jersey heifer FEC in the present study. Studies have found that CT from BFT can decrease FEC in ruminants (Min et al., 2003). It has also been found that lambs grazing forages that contained CT had a reduction in FEC (Niezen et al., 1998). Other research has suggested that BFT may reduce FEC in dairy heifers (Shepley et al., 2015). The results of the current study do not agree with the findings of
552 553 554 555 556 557 558 559	pasture is scarce; more research is needed to determine the relationship between ruminant serum IGF-1 concentrations and pasture type, specifically of Jersey heifers grazing organic pastures. The addition of BFT to pastures did not have any effect on Jersey heifer FEC in the present study. Studies have found that CT from BFT can decrease FEC in ruminants (Min et al., 2003). It has also been found that lambs grazing forages that contained CT had a reduction in FEC (Niezen et al., 1998). Other research has suggested that BFT may reduce FEC in dairy heifers (Shepley et al., 2015). The results of the current study do not agree with the findings of these previous studies. The differences in results may be due to the low amount of CT (0.5-7.5 g
552 553 554 555 556 557 558 559 560	pasture is scarce; more research is needed to determine the relationship between ruminant serum IGF-1 concentrations and pasture type, specifically of Jersey heifers grazing organic pastures. The addition of BFT to pastures did not have any effect on Jersey heifer FEC in the present study. Studies have found that CT from BFT can decrease FEC in ruminants (Min et al., 2003). It has also been found that lambs grazing forages that contained CT had a reduction in FEC (Niezen et al., 1998). Other research has suggested that BFT may reduce FEC in dairy heifers (Shepley et al., 2015). The results of the current study do not agree with the findings of these previous studies. The differences in results may be due to the low amount of CT (0.5-7.5 g CT/kg DM) reported in our pastures by Rose et al. (2021). In addition, it should be noted that the

563	reduce parasite load, our results indicate that BFT had no effect on parasite load. As such,
564	additional research needs to be completed to determine how different varieties of BFT in an
565	organic pasture may impact parasite load of developing dairy heifers of different breeds.
566	The findings of the economic analysis in the present study demonstrate that all treatments
567	other than PR are estimated to have a positive annual net financial impact. This indicates that
568	once the establishment costs have been paid, producers could expect a positive impact annually
569	from producing organic replacement dairy heifers on these pasture treatments as compared to
570	conventional heifers fed in confinement. When comparing the monocultures with the BFT mixed
571	pasture treatments, it is important to consider how the differing fertilization rate influenced the
572	results. The monoculture pasture treatments received twice the amount of sodium nitrate as
573	compared to the BFT mixed pasture treatments as well as the application of the hydrolyzed
574	poultry feathers. Additionally, the monocultures required more hectares on average as compared
574	to the BFT mixed treatments to produce the required feed (resulting from less biomass per ha on
575	to the BFT mixed treatments to produce the required feed (resulting from less biomass per ha on
575 576	to the BFT mixed treatments to produce the required feed (resulting from less biomass per ha on average). This increased number of hectares along with the increased fertilization rate resulted in
575 576 577	to the BFT mixed treatments to produce the required feed (resulting from less biomass per ha on average). This increased number of hectares along with the increased fertilization rate resulted in an average increase in fertilization expenses of \$10,755 within the partial budget for MONO
575 576 577 578	to the BFT mixed treatments to produce the required feed (resulting from less biomass per ha on average). This increased number of hectares along with the increased fertilization rate resulted in an average increase in fertilization expenses of \$10,755 within the partial budget for MONO pastures as compared to MIX pastures. Fertilization requirements may vary and further
575 576 577 578 579	to the BFT mixed treatments to produce the required feed (resulting from less biomass per ha on average). This increased number of hectares along with the increased fertilization rate resulted in an average increase in fertilization expenses of \$10,755 within the partial budget for MONO pastures as compared to MIX pastures. Fertilization requirements may vary and further investigation of the individual needs of each of the pasture treatments is required to more
575 576 577 578 579 580	to the BFT mixed treatments to produce the required feed (resulting from less biomass per ha on average). This increased number of hectares along with the increased fertilization rate resulted in an average increase in fertilization expenses of \$10,755 within the partial budget for MONO pastures as compared to MIX pastures. Fertilization requirements may vary and further investigation of the individual needs of each of the pasture treatments is required to more precisely evaluate the expected increases to fertilization expenses. Previous research comparing
575 576 577 578 579 580 581	to the BFT mixed treatments to produce the required feed (resulting from less biomass per ha on average). This increased number of hectares along with the increased fertilization rate resulted in an average increase in fertilization expenses of \$10,755 within the partial budget for MONO pastures as compared to MIX pastures. Fertilization requirements may vary and further investigation of the individual needs of each of the pasture treatments is required to more precisely evaluate the expected increases to fertilization expenses. Previous research comparing growth of beef steers consuming TF+BFT, TF+alfalfa and TF+non-organic N fertilizer found
575 576 577 578 579 580 581 582	to the BFT mixed treatments to produce the required feed (resulting from less biomass per ha on average). This increased number of hectares along with the increased fertilization rate resulted in an average increase in fertilization expenses of \$10,755 within the partial budget for MONO pastures as compared to MIX pastures. Fertilization requirements may vary and further investigation of the individual needs of each of the pasture treatments is required to more precisely evaluate the expected increases to fertilization expenses. Previous research comparing growth of beef steers consuming TF+BFT, TF+alfalfa and TF+non-organic N fertilizer found that steers consuming TF+BFT gained more than the other treatments and had an increased gross

586	south United States comparing native warm season grasses with and without legumes found that
587	feeding switchgrass alone resulted in the greatest economic return (Lowe et al., 2016). These
588	data demonstrate that analyzing economic return of heifers grazing pasture is highly variable
589	between different locations, fertilization type and rate, and pasture type.
590	CONCLUSIONS
591	Interseeding a legume, BFT, with grasses in an organic pasture increases Jersey heifer
592	weight gain when compared to those grazing a monoculture grass, but were not different from
593	those fed a conventional TMR. Furthermore, Jersey heifers grazing BFT mixed pastures had
594	higher BUN concentration than animals on grass pastures. Even with higher levels of BUN,
595	animals grazing BFT mixed pastures never surpassed BUN concentrations that are known to be
596	detrimental to reproduction. Serum IGF-1 levels were also commonly higher in heifers fed a
597	TMR compared to heifers grazing TF. Heifer parasite load and hip-height were not affected by
598	the presence of BFT in pasture or any of the specific treatments. This research demonstrates that
599	grazing Jersey heifers on organic grass-BFT mixed pastures may be a sustainable method to
600	improve dairy heifer development in animals consuming pasture in a temperate climate similar to
601	that found in the Intermountain West region of the US, especially those utilizing an organic
602	system.
603	ACKNOWLEDGEMENTS
604	Joint contribution of the USDA-ARS and the Utah Agric. Exp. Stn. UAES Journal Paper No.
605	XXXX. This work was supported by the USDA National Institute of Food and Agriculture
606	(NIFA) through, 1) Western Sustainable Agriculture Research and Education program (WSARE)
607	grant no. 2016-38640-25383/subaward SW17-046, and, 2) Organic Agriculture Research and
608	Extension Initiative (OREI) grant no. 2017-51300-26866/project accession no UTA01375.

609	USDA is an equal opportunity employer and service provider. Mention of a trademark,
610	proprietary product, or vendor does not constitute a guarantee or warranty of the product by the
611	USDA, or Utah State Univ.
612	REFERENCES
613	Akins, M. S. 2016. Dairy heifer development and nutrition management. Veterinary
614	Clinics: Food Animal Practice 32(2):303-317.
615	
616	Barker, J., D. Buskirk, H. Ritchie, S. Rust, R. Leep, D. Barclay, R. Adams, and G.
617	Hartnell. 1999. Intensive grazing management of smooth bromegrass with or without
618	alfalfa or birdsfoot trefoil: heifer performance and sward characteristics. The
619	professional animal scientist 15(2):130-135.
620	
621	Boulton, A., J. Rushton, and D. Wathes. 2017. An empirical analysis of the cost of
622	rearing dairy heifers from birth to first calving and the time taken to repay these costs.
623	Animal 11(8):1372-1380.
624	
625	Butler, W. R. 1998. Effect of protein nutrition on ovarian and uterine physiology in dairy
626	cattle. Journal of dairy science 81(9):2533-2539.
627	
628	David, E. D. and W. D. Lindquist. 1982. Determination of the specific gravity of certain
629	helminth eggs using sucrose density gradient centrifugation. The Journal of
630	parasitology:916-919.
631	
632	Duplessis, M., R. Cue, D. Santschi, D. Lefebvre, and R. Lacroix. 2015. Weight, height,
633	and relative-reliability indicators as a management tool for reducing age at first breeding
634	and calving of dairy heifers. Journal of dairy science 98(3):2063-2073.

636	Elsasser, T., T. Rumsey, and A. Hammond. 1989. Influence of diet on basal and growth
637	hormone-stimulated plasma concentrations of IGF-I in beef cattle. Journal of Animal
638	Science 67(1):128-141.
639	
640	Fenwick, M. A., R. Fitzpatrick, D. A. Kenny, M. G. Diskin, J. Patton, J. J. Murphy, and D.
641	C. Wathes. 2008. Interrelationships between negative energy balance (NEB) and IGF
642	regulation in liver of lactating dairy cows. Domestic animal endocrinology 34(1):31-44.
643	
644	Ferguson, J., T. Blanchard, D. Galligan, D. Hoshall, and W. Chalupa. 1988. Infertility in
645	dairy cattle fed a high percentage of protein degradable in the rumen. Journal of the
646	American Veterinary Medical Association (USA).
647	
648	Ferguson, J. D., D. T. Galligan, T. Blanchard, and M. Reeves. 1993. Serum urea
649	nitrogen and conception rate: the usefulness of test information. Journal of dairy science
650	76(12):3742-3746.
651	
652	Funston, R. N. and D. Larson. 2011. Heifer development systems: Dry-lot feeding
653	compared with grazing dormant winter forage. Journal of animal science 89(5):1595-
654	1602.
655	
656	Gabler, M. T. and A. J. Heinrichs. 2003. Dietary Protein to Metabolizable Energy Ratios
657	on Feed Efficiency and Structural Growth of Prepubertal Holstein Heifers1. Journal of
658	Dairy Science 86(1):268-274.
659	
660	Habib, M., M. Rashid, M. Islam, S. Majumder, K. Islam, S. Ahmed, M. Alam, and E.
661	Vargas-Bello-Pérez. 2018. Influence of green grass-based diets on growth and
662	reproductive performance in dairy heifers. Tropical animal health and production
663	50(4):889-895.
664	

665	Hayes, C. J., C. G. McAloon, C. I. Carty, E. G. Ryan, J. F. Mee, and L. O'Grady. 2019.
666	The effect of growth rate on reproductive outcomes in replacement dairy heifers in
667	seasonally calving, pasture-based systems. Journal of dairy science 102(6):5599-5611.
668	
669	Heinrichs, A. J. and C. M. Jones. 2016. Monitoring Dairy Heifer Growth. in PennState
670	Extension. Pennsylvania State University.
671	
672	Hoffman, P., N. Brehm, S. Price, and A. Prill-Adams. 1996. Effect of accelerated
673	postpubertal growth and early calving on lactation performance of primiparous Holstein
674	heifers. Journal of dairy science 79(11):2024-2031.
675	
676	Hwang, S. Y., M. J. Lee, and H. C. Peh. 2001. Diurnal variations in milk and blood urea
677	nitrogen and whole blood ammonia nitrogen in dairy cows. Asian-Australasian Journal
678	of Animal Sciences 14(12):1683-1689.
679	
680	Kolver, E. and K. Macmillan. 1994. Variation in selected blood plasma constituents
681	during the post-partum and breeding periods in dairy cows. New Zealand Veterinary
682	Journal 42(5):161-166.
683	
684	Lowe, J. K., C. N. Boyer, A. P. Griffith, J. C. Waller, G. E. Bates, P. D. Keyser, J. A.
685	Larson, and E. Holcomb. 2016. The cost of feeding bred dairy heifers on native warm-
686	season grasses and harvested feedstuffs. Journal of Dairy Science 99(1):634-643.
687	
688	Macdonald, K., L. McNaughton, G. Verkerk, J. Penno, L. Burton, D. Berry, P. Gore, J.
689	Lancaster, and C. Holmes. 2007. A comparison of three strains of Holstein-Friesian
690	cows grazed on pasture: growth, development, and puberty. Journal of Dairy Science
691	90(8):3993-4003.
692	
693	Marston, T., K. Lusby, and R. Wettemann. 1995. Effects of postweaning diet on age and
694	weight at puberty and milk production of heifers. Journal of animal science 73(1):63-68.
695	

697

82. DIANE Publishing.

McBride, W. D. 2010. Characteristics, costs, and issues for organic dairy farming. Vol.

698	
699	Min, B., T. Barry, G. Attwood, and W. McNabb. 2003. The effect of condensed tannins
700	on the nutrition and health of ruminants fed fresh temperate forages: a review. Animal
701	feed science and technology 106(1-4):3-19.
702	
703	Mines, J. 1977. Modifications of the McMaster worm egg counting method. Australian
704	veterinary journal 53(7):342-343.
705	
706	Moriel, P., R. Cooke, D. Bohnert, J. Vendramini, and J. Arthington. 2012. Effects of
707	energy supplementation frequency and forage quality on performance, reproductive,
708	and physiological responses of replacement beef heifers. Journal of Animal Science
709	90(7):2371-2380.
710	
711	Mullen, M. P., D. P. Berry, D. J. Howard, M. G. Diskin, C. O. Lynch, L. Giblin, D. A.
712	Kenny, D. A. Magee, K. G. Meade, and S. M. Waters. 2011. Single nucleotide
713	polymorphisms in the insulin-like growth factor 1 (IGF-1) gene are associated with
714	performance in Holstein-Friesian dairy cattle. Frontiers in genetics 2:3.
715	
716	Niezen, J. H., H. A. Robertson, G. C. Waghorn, and W. A. G. Charleston. 1998.
717	Production, faecal egg counts and worm burdens of ewe lambs which grazed six
718	contrasting forages. Veterinary Parasitology 80(1):15-27.
719	
720	NRC. 2001. Nutrient requirements of dairy cattle: 2001. National Academies Press.
721	
722	Ordonez, A., T. Parkinson, C. Matthew, C. Holmes, R. Miller, N. Lopez-Villalobos, J.
723	Burke, and I. Brookes. 2007. Effects of application in spring of urea fertiliser on aspects
724	of reproductive performance of pasture-fed dairy cows. New Zealand veterinary journal
725	55(2):69-76.
726	

727	Pace, M., C. Israelsen, and R. Larsen. 2019. Costs and Returns for Irrigated Safflower,
728	Northern Utah. Utah State University Extension Paper 2031.
729	
730	Patra, A. K. and J. Saxena. 2011. Exploitation of dietary tannins to improve rumen
731	metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture
732	91(1):24-37.
733	
734	Pirlo, G., F. Miglior, and M. Speroni. 2000. Effect of age at first calving on production
735	traits and on difference between milk yield returns and rearing costs in Italian Holsteins.
736	Journal of dairy science 83(3):603-608.
737	
738	Raeth-Knight, M., H. Chester-Jones, S. Hayes, J. Linn, R. Larson, D. Ziegler, B. Ziegler,
739	and N. Broadwater. 2009. Impact of conventional or intensive milk replacer programs on
740	Holstein heifer performance through six months of age and during first lactation. Journal
741	of Dairy Science 92(2):799-809.
742	
743	Rajala-Schultz, P., W. Saville, G. Frazer, and T. Wittum. 2001. Association between
744	milk urea nitrogen and fertility in Ohio dairy cows. Journal of dairy science 84(2):482-
744 745	milk urea nitrogen and fertility in Ohio dairy cows. Journal of dairy science 84(2):482- 489.
745	
745 746	489.
745 746 747	489. Rincker, L. D., M. VandeHaar, C. Wolf, J. Liesman, L. Chapin, and M. W. Nielsen. 2011.
745 746 747 748	489. Rincker, L. D., M. VandeHaar, C. Wolf, J. Liesman, L. Chapin, and M. W. Nielsen. 2011. Effect of intensified feeding of heifer calves on growth, pubertal age, calving age, milk
745 746 747 748 749	489. Rincker, L. D., M. VandeHaar, C. Wolf, J. Liesman, L. Chapin, and M. W. Nielsen. 2011. Effect of intensified feeding of heifer calves on growth, pubertal age, calving age, milk
745 746 747 748 749 750	489. Rincker, L. D., M. VandeHaar, C. Wolf, J. Liesman, L. Chapin, and M. W. Nielsen. 2011. Effect of intensified feeding of heifer calves on growth, pubertal age, calving age, milk yield, and economics. Journal of Dairy Science 94(7):3554-3567.
745 746 747 748 749 750 751	 489. Rincker, L. D., M. VandeHaar, C. Wolf, J. Liesman, L. Chapin, and M. W. Nielsen. 2011. Effect of intensified feeding of heifer calves on growth, pubertal age, calving age, milk yield, and economics. Journal of Dairy Science 94(7):3554-3567. Roche, J., N. Dennis, K. Macdonald, C. Phyn, P. Amer, R. White, and J. Drackley.
745 746 747 748 749 750 751 752	 489. Rincker, L. D., M. VandeHaar, C. Wolf, J. Liesman, L. Chapin, and M. W. Nielsen. 2011. Effect of intensified feeding of heifer calves on growth, pubertal age, calving age, milk yield, and economics. Journal of Dairy Science 94(7):3554-3567. Roche, J., N. Dennis, K. Macdonald, C. Phyn, P. Amer, R. White, and J. Drackley. 2015. Growth targets and rearing strategies for replacement heifers in pasture-based
745 746 747 748 749 750 751 752 753	 489. Rincker, L. D., M. VandeHaar, C. Wolf, J. Liesman, L. Chapin, and M. W. Nielsen. 2011. Effect of intensified feeding of heifer calves on growth, pubertal age, calving age, milk yield, and economics. Journal of Dairy Science 94(7):3554-3567. Roche, J., N. Dennis, K. Macdonald, C. Phyn, P. Amer, R. White, and J. Drackley. 2015. Growth targets and rearing strategies for replacement heifers in pasture-based
745 746 747 748 749 750 751 752 753 754	 489. Rincker, L. D., M. VandeHaar, C. Wolf, J. Liesman, L. Chapin, and M. W. Nielsen. 2011. Effect of intensified feeding of heifer calves on growth, pubertal age, calving age, milk yield, and economics. Journal of Dairy Science 94(7):3554-3567. Roche, J., N. Dennis, K. Macdonald, C. Phyn, P. Amer, R. White, and J. Drackley. 2015. Growth targets and rearing strategies for replacement heifers in pasture-based systems: a review. Animal Production Science 55(7):902-915.

758							
759	Rose, M. F., B. L. Waldron, S. C. Isom, M. D. Peel, K. J. Thornton, R. Miller, K. A. Rood,						
760	J. A. Hadfield, J. Long, B. Henderson, and J. E. Creech. 2021. The effects of organic						
761	grass and grass-birdsfoot trefoil pastures on Jersey heifer development: Herbage						
762	characteristics affecting intake. J. Dairy Sci. In Press.						
763							
764	Saha, U. K., L. S. Sonon, D. W. Hancock, N. S. Hill, L. Stewart, G. L. Heusner, and D.						
765	E. Kissel. 2010. Common terms used in animal feeding and nutrition. University of						
766	Georgia Cooperative Extension. Bulletin 1367						
767							
768	Shepley, E., E. Vasseur, R. Bergeron, A. Villeneuve, and S. Lachance. 2015. Short						
769	Communication: Birdsfoot trefoil as a preventative treatment for gastrointestinal						
770	nematodes in pastured dairy heifers. Canadian Journal of Animal Science 95(4):533-						
771	537.						
772							
773	Siadkowska, E., L. Zwierzchowski, J. Oprzadek, N. Strzalkowska, E. Bagnicka, and J.						
774	Krzyzewski. 2006. Effect of polymorphism in IGF-1 gene on production traits in Polish						
775	Holstein-Friesian cattle. Anim Sci Pap Rep 24(3):225-237.						
776							
777	Tozer, P., F. Bargo, and L. Muller. 2003. Economic analyses of feeding systems						
778	combining pasture and total mixed ration. Journal of Dairy Science 86(3):808-818.						
779							
780	Tozer, P. and A. Heinrichs. 2001. What affects the costs of raising replacement dairy						
781	heifers: A multiple-component analysis. Journal of dairy science 84(8):1836-1844.						
782							
783	USDA-AMS. 2019. Guidelines for Organic Certification of Dairy Livestock.						
784							
785	Waldron, B. L., T. J. Bingham, J. E. Creech, M. D. Peel, R. Miller, K. B. Jensen, D. R.						
786	ZoBell, J. S. Eun, K. Heaton, and D. L. Snyder. 2020. Binary mixtures of alfalfa and						
787	birdsfoot trefoil with tall fescue: Herbage traits associated with the improved growth						
788	performance of beef steers. Grassland Science 66(2):74-87.						

Zanton, G. and A. J. Heinrichs. 2005. Meta-analysis to assess effect of prepubertal

average daily gain of Holstein heifers on first-lactation production. Journal of Dairy

792 Science 88(11):3860-3867.

793

- Zanton, G. I. and A. J. Heinrichs. 2007. The Effects of Controlled Feeding of a High-
- 795 Forage or High-Concentrate Ration on Heifer Growth and First-Lactation Milk
- Production1. Journal of Dairy Science 90(7):3388-3396.
- 797
- Zhang, J., H. Shi, Y. Wang, S. Li, H. Zhang, Z. Cao, and K. Yang. 2018. Effects of
- 799 limit-feeding diets with different forage-to-concentrate ratios on nutrient intake,
- rumination, ruminal fermentation, digestibility, blood parameters and growth in Holstein

e perez

heifers. Animal Science Journal 89(3):527-536.

802

Table 1. Nutrient analysis of individual pasture treatments and TMR, averaged over 3years and separated by sampling period

_yours and separated by sampning period							
Day 0 - 35	Treatments ¹	CP, % ²	ADF, % ³	aNDF, % ⁴	Fat, %	ME, Mcal/kg ⁵	Ash, %
	MB	9.02	39.68	61.11	2.29	2.75	10.34
	MB+BFT	13.90	37.86	57.27	2.07	2.85	9.25
	OG	8.43	37.11	60.55		2.68	11.08
	OG+BFT	12.14	36.99	57.15	2.34	2.81	10.21
	PR	8.16	30.70	47.76	2.54	3.01	11.51
	PR+BFT	16.37	30.08	42.42	2.19	3.12	10.18
	TF	8.54	36.74	57.11	2.09	2.63	13.39
	TF+BFT	16.37	30.08	42.42	2.19	2.74	10.18
	TMR	14.31	27.43	37.84	3.03	2.40	8.96
	MONO	8.54	36.06	56.63		2.77	11.58
	MIX	14.69	33.76	49.81	2.20	2.88	9.95
35 - 70			4	.,			
	MB	9.48	43.25	63.05	2.56	2.46	11.43
	MB+BFT	16.33	36.70	53.66	2.17	2.63	11.76
	OG	9.23	39.51	63.41	3.22	2.48	12.53
	OG+BFT	13.97	36.67	56.86	2.74	2.67	12.66
	PR	8.79	35.45	55.26	2.89	2.64	13.30
	PR+BFT	16.48	33.18	45.80	2.10	2.70	11.88
	TF	8.12	40.02	61.24	2.27	2.38	15.03
	TF+BFT	13.54	36.29	54.82	2.18	2.47	14.92
	TMR	14.54	30.54	41.44	2.88	2.32	8.74
	MONO	8.91	39.55	60.74	2.74	2.49	13.07
	MIX	15.08	35.71	52.79	2.30	2.62	12.80
70 - 105							
	MB	11.69	40.34	59.14	3.04	2.57	12.00
	MB+BFT	17.09	34.31	51.56	2.68	2.78	12.21
	OG	11.54	35.98	59.42	3.75	2.58	13.19
	OG+BFT	14.53	34.46	54.74	3.27	2.76	13.34
	PR	12.60	33.25	51.66	3.03	2.69	13.22
	PR+BFT	19.06	30.58	41.24	2.17	2.72	12.79
	TF	9.51	37.97	58.38	2.68	2.43	15.83
	TF+BFT	14.15	34.41	52.46	2.56	2.56	15.81
	TMR	13.40	32.45	43.36	2.42	2.28	8.11
	MONO	11.34	36.88	57.15	3.13	2.57	13.56
	MIX	16.21	33.44	50.00	2.67	2.71	13.54
0 - 105							
	MB	10.06	41.09	61.1	2.63	2.59	11.26
	MB+BFT	15.77	36.29	54.16	2.31	2.75	11.07
	OG	9.73	37.53	61.13	3.23	2.58	12.27

805	OG+BFT	13.55	36.04	56.25	2.78	2.75	12.07
000	PR	9.85	33.13	51.56	2.82	2.78	12.68
806	PR+BFT	17.3	31.28	43.15	2.15	2.85	11.62
	TF	8.72	38.24	58.91	2.35	2.48	14.75
	TF+BFT	14.69	33.59	49.90	2.31	2.59	13.64
	TMR	14.08	30.14	40.88	2.78	2.33	8.6
	MONO	9.6	37.5	58.17	2.76	2.61	12.74
	MIX	15.33	34.3	50.87	2.39	2.74	12.1

¹Treatments include: Meadow Bromegrass (MB), Meadow Bromegrass + Birdsfoot Trefoil (BFT) (MB+BFT) Orchard Grass (OG), Orchard Grass + BFT (OG+BFT), Perennial Ryegrass (PR), Perennial Ryegrass + BFT (PR+BFT), AUtotal mixed ration (TMR), average of all monoculture grass pastures (MONO), and average of all grass + BFT mixed pastures (MIX). The TMR confinefement control was only used in the study during years 2017 and 2018. The TMR composition (DM basis) for 2017 was: 45% alfalfa haylage, 19% corn silage, 18% flaked corn grain, 9% beet pulp shreds, and 9% wheat straw. The composition for the TMR in 2018 (DM basis) was: 46% corn Ind al Detergen t x 0.04409 x 0. silage, 27% flaked corn grain, 22% alfalfa hay, and 5% wheat straw. All treatments have n = 9, except TMR has n = 6.

²Crude Protein; ³Acid Detergent Fiber; ⁴Neutral Detergent Fiber (determined by amalayse); ⁵Metabolizable Energy, calculated as total digestible nutrient x 0.04409 x 0.82 (NRC, 2001)

ScholarOne support: (434) 964 4100

Weight (kg) ²						
Treatments ¹	Day-0	Day-35	Day-70	Day-105	Gain	ADG
MB	199	208	229 ^{de}	251 ^{de}	52°	0.50 ^d
MB+BFT	199	213	241 ^{abc}	262 ^{abc}	63 ^b	0.60°
OG	194	212	231 ^{cde}	251 ^{de}	56°	0.53 ^d
OG+BFT	198	215	238 ^{abcd}	262 ^{abc}	64 ^b	0.61 ^{bc}
PR	198	215	236 ^{bcd}	251 ^{cd}	53°	0.51 ^d
PR+BFT	195	217	243 ^{ab}	265 ^{ab}	71ª	0.67ª
TF	199	210	223 ^e	240 ^e	41 ^d	0.39 ^e
TF+BFT	198	217	238 ^{bcd}	255 ^{bcd}	57°	0.54 ^d
TMR	202	225	250 ^a	271 ^a	70 ^{ab}	0.67 ^{ab}
SEM	9.4	9.5	12.1	10.9	0.1	0.03
Treatment*Day ³				P < 0.01	-	-
Treatment ³				P = 0.01	P < 0.01	P < 0.01
Day ³				P < 0.01	-	-

Table 2. Effect of different treatments on heifer body weights over the 105-d grazing period $W_{\text{cickt}} (d_{\text{rg}})^2$

¹Treatments include: Meadow Bromegrass (MB), Meadow Bromegrass + Birdsfoot Trefoil (BFT) (MB+BFT) Orchard Grass (OG), Orchard Grass + BFT (OG+BFT), Perennial Ryegrass (PR), Perennial Ryegrass + BFT (PR+BFT), and total mixed ration (TMR). The confinement control was only used in the study during years 2017 and 2018. The TMR composition (DM basis) for 2017 was: 45% alfalfa haylage, 19% corn silage, 18% flaked corn grain, 9% beet pulp shreds, and 9% wheat straw. The composition for the TMR in 2018 (DM basis) was: 46% corn silage, 27% flaked corn grain, 22% alfalfa hay, and 5% wheat straw. All treatments have n = 9, except TMR has n = 6.

²Values within columns represent the least square mean. Means within each column that have a different superscript represent differences (P < 0.05) between treatments within each time point. Those with treatment differences indicated by superscripts had an overall treatment effect of P < 0.05.

³P-values for Treatment*Day, Treatment, and Day when heifer body weights were analyzed over time with repeated measures.

807

	Hip-Height (cm) ⁵					
Treatments ¹	Day-0	Day-35	Day-70	Day-105	Gain	
MB	111.9	113.8	115.8	117.6	5.6	
MB+BFT	111.5	114.3	115.9	118.4	7.0	
OG	111.8	113.2	115.6	117.8	6.0	
OG+BFT	112.2	113.6	116.1	118.1	5.9	
PR	112.3	113.9	115.3	118.1	5.9	
PR+BFT	111.9	114.1	116.3	118.2	6.3	
TF	111.8	113.6	115.1	116.2	4.4	
TF+BFT	112.5	114.4	116.8	118.2	5.7	
TMR	112.7	114.9	117.7	119.0	6.2	
SEM	1.9	1.7	1.9	1.3	1.0	
Treatment*Day ³				P = 0.65	-	
Treatment ³				P = 0.42	P = 0.08	
Day ³				P < 0.01	-	
Pasture Types ²						
Mix	112.0	114.1	116.3	118.2	6.2ª	
Mono	111.9	113.6	115.4	117.5	5.5 ^b	
SEM	1.8	1.7	1.9	1.3	0.9	
Pasture Type*Day ⁴				P = 0.61	-	
Pasture Type ⁴				P = 0.16	P = 0.05	
Day ⁴				P < 0.01	-	

¹Treatments include: Meadow Bromegrass (MB), Meadow Bromegrass + Birdsfoot Trefoil (BFT) (MB+BFT) Orchard Grass (OG), Orchard Grass + BFT (OG+BFT), Perennial Ryegrass (PR), Perennial Ryegrass + BFT (PR+BFT), and total mixed ration (TMR). The confinement control was only used in the study during years 2017 and 2018. The TMR composition (DM basis) for 2017 was: 45% alfalfa haylage, 19% corn silage, 18% flaked corn grain, 9% beet pulp shreds, and 9% wheat straw. The composition for the TMR in 2018 (DM basis) was: 46% corn silage, 27% flaked corn grain, 22% alfalfa hay, and 5% wheat straw. All treatments have n = 9, except TMR has n = 6.

²Pasture types include: Pastures with BFT (Mix) and pastures without BFT (Mono). Both mixed pastures and monoculture pastures have n = 36.

³P-values for Treatment*Day, Treatment, and Day when heifer hip-heights were analyzed over time with repeated measures. ⁴P-values for Pasture Type*Day, Pasture Type, and Day when heifer hip-heights were analyzed over time with repeated measures.

⁵Values within columns represent the least square mean. Means within each column that have a different superscript represent differences (P < 0.05) between treatments within each time point. Those with treatment differences indicated by superscripts had an overall treatment effect of P < 0.05.

	Blood Urea Nitrogen (mg/dL) ²					
¹ Treatments	Day-0	Day-35	Day-70	Day-105		
MB	12.3	9.9°	10.3 ^d	11.6 ^{de}		
MB+BFT	12.1	13.2 ^{ab}	14.7 ^{ab}	16.3ª		
OG	13.6	11.5 ^{bc}	13.1 ^{bc}	14.7 ^{abc}		
OG+BFT	12.3	14.4 ^a	16.0 ^a	14.9 ^{abc}		
PR	13.2	11.3 ^{bc}	10.5 ^{cd}	13.1 ^{cd}		
PR+BFT	12.7	15.4 ^a	16.1ª	15.8 ^{ab}		
TF	13.7	10.1°	9.7 ^d	10.2 ^e		
TF+BFT	12.9	13.4 ^{ab}	13.1 ^{bc}	13.2 ^{cd}		
TMR	12.6	15.4 ^a	14.9 ^{ab}	13.3 ^{bcd}		
SEM	2.2	1.4	1.7	1.1		
Treatment*Day ³				P = 0.12		
Treatment ³				P < 0.01		
_Day ³				P = 0.32		

Table 4. Effect of different pasture treatments on heifer blood urea nitrogen (BUN)concentrations over the 105-d grazing period

¹Treatments include: Meadow Bromegrass (MB), Meadow Bromegrass + Birdsfoot Trefoil (BFT) (MB+BFT) Orchard Grass (OG), Orchard Grass + BFT (OG+BFT), Perennial Ryegrass (PR), Perennial Ryegrass + BFT (PR+BFT), and total mixed ration (TMR). The confinement control was only used in the study during years 2017 and 2018. The TMR composition (DM basis) for 2017 was: 45% alfalfa haylage, 19% corn silage, 18% flaked corn grain, 9% beet pulp shreds, and 9% wheat straw. The composition for the TMR in 2018 (DM basis) was: 46% corn silage, 27% flaked corn grain, 22% alfalfa hay, and 5% wheat straw. All treatments have n = 9, except TMR has n = 6.

²Values within columns represent the least square mean. Means within each column that have a different superscript represent differences (P < 0.05) between treatments within each time point. Those with treatment differences indicated by superscripts had an overall treatment effect of P < 0.05.

³P-values for Treatment*Day, Treatment, and Day when heifer blood urea nitrogen concentrations were analyzed over time with repeated measures.

	Insulin-lik	te Growth Factor-1 ((ng/mL) ⁵	
Treatments ¹	Day-0	Day-35	Day-70	Day-105
MB	150.9	136.1 ^{bc}	149.3 ^{bc}	178.3 ^{ab}
MB+BFT	153.1	151.1 ^b	148.4 ^{bc}	172.3 ^{ab}
OG	157.4	138.2 ^{bc}	159.5 ^{ab}	184.8 ^a
OG+BFT	158.3	148.6 ^b	146.9 ^{bc}	159.3 ^{bc}
PR	146.3	137.2 ^{bc}	147.0 ^{bc}	163.2 ^{abc}
PR+BFT	149.7	153.3 ^{ab}	151.2 ^b	184.3 ^a
TF	164.4	121.9°	139.5 ^{bc}	141.9°
TF+BFT	147.0	141.6 ^{bc}	130.0°	142.3°
TMR	164.2	180.3 ^a	179.4ª	184.2 ^{ab}
SEM	15.3	24.7	33.6	25.5
Treatment*Day ³				P = 0.23
Treatment ³				P < 0.01
Day ³				P < 0.01
Pasture Types ²				
Mix	152.0	148.7	143.9	164.7
Mono	154.7	134.3	148.5	167.5
SEM	22.9	22.9	31.7	24.6
Pasture Type*Day ⁴				P = 0.14
Pasture Type ⁴				P = 0.87
Day ⁴				P < 0.01

Table 5. Effect of different pasture treatments on heifer Insulin-like Growth Factor-1 (IGF-1)concentrations over the 105-d grazing period

¹Treatments include: Meadow Bromegrass (MB), Meadow Bromegrass + Birdsfoot Trefoil (BFT) (MB+BFT) Orchard Grass (OG), Orchard Grass + BFT (OG+BFT), Perennial Ryegrass (PR), Perennial Ryegrass + BFT (PR+BFT), and total mixed ration (TMR). The confinement control was only used in the study during years 2017 and 2018. The TMR composition (DM basis) for 2017 was: 45% alfalfa haylage, 19% corn silage, 18% flaked corn grain, 9% beet pulp shreds, and 9% wheat straw. The composition for the TMR in 2018 (DM basis) was: 46% corn silage, 27% flaked corn grain, 22% alfalfa hay, and 5% wheat straw. All treatments have n = 9, except TMR has n = 6.

²Pasture types include: Pastures with BFT (Mix) and pastures without BFT (Mono). Both mixed pastures and monoculture pastures have n = 36.

³P-values for Treatment*Day, Treatment, and Day when heifer hip-heights were analyzed over time with repeated measures. ⁴P-values for Pasture Type*Day, Pasture Type, and Day when heifer hip-heights were analyzed over time with repeated measures.

⁵Values within columns represent the least square mean. Means within each column that have a different superscript represent differences (P < 0.05) between treatments within each time point. Those with treatment differences indicated by superscripts had an overall treatment effect of P < 0.05.

811

the 105-d grazing period						
		Sampling	Day ²			
Variable ¹	Day 0	Day 35	Day 70	Day 105	SEM	Day Effect ³
BW	198 ^d	215°	236 ^b	257 ^a	10	P < 0.01
Hip-Height	112.0 ^d	114.0 ^c	116.0 ^b	118.0ª	1.6	P < 0.01
BUN	13.0	12.7	13.0	13.7	0.5	P = 0.32

Table 6. The effect of sampling day on heifer body weights (BW), hip-heights, blood urea nitrogen (BUN) concentrations, and Insulin-like Growth Factor-1 (IGF-1) concentrations over

¹Variables include heifer body weight (BW, kg), hip heights (cm), blood urea nitrogen (BUN, mg/dL), and Insulin-like Growth Factor-1 (IGF-1, ng/mL)

² Values within columns represent the least square mean. Means within each row that have a different superscript are different .ted m. (P < 0.05) from one another.

149.2^{bc}

168.1ª

22.5

P < 0.01

³The effects of day when analyzed with repeated measures over the 105 d period

145.6^b

155.9^b

813

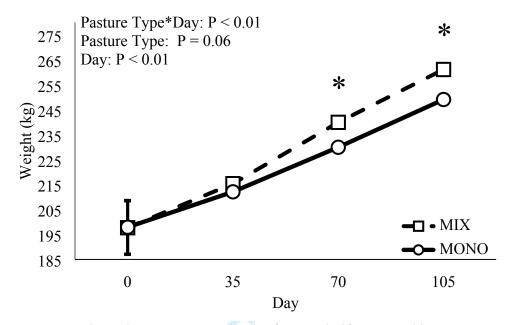
IGF-1

	Total	Annual Net	Payback	Breakeven
	Establishment	Financial	Period	Organic
Treatment ¹	Cost ³	Impact ⁴	(years) ⁵	Premium ⁶
MB + BFT	\$1,923°	\$26,246ª	0.073ª	-\$37 <mark>°</mark>
PR + BFT	\$1,888°	\$25,701ª	0.073 ^a	-\$32 <mark>°</mark>
TF + BFT	\$2,021 ^{bc}	\$24,754ª	0.082 ^a	-\$22 <mark>°</mark>
OG + BFT	\$2,325ª	\$24,583ª	0.095ª	-\$20 <mark>°</mark>
MB	\$1,543 ^d	\$13,582 ^b	0.128 ^a	\$90 <mark>ь</mark>
OG	\$1,702 ^d	\$12,659 ^b	0.151ª	\$99 <mark>ь</mark>
TF	\$1,322 ^e	\$9,528°	0.153ª	\$130 <mark>b</mark>
PR	\$2,114 ^b	\$-843 ^d	N/A	\$234 ^a
Pasture Types ²				
MIX	\$2,039ª	\$25,321ª	0.081ª	-\$28 ^b
MONO	\$1,670 ^b	\$8,731 ^b	0.171 ^b	\$137 ^a

Table 7. Pasture treatment total establishment costs, annual net financial impact, payback period, and break-even organic premium

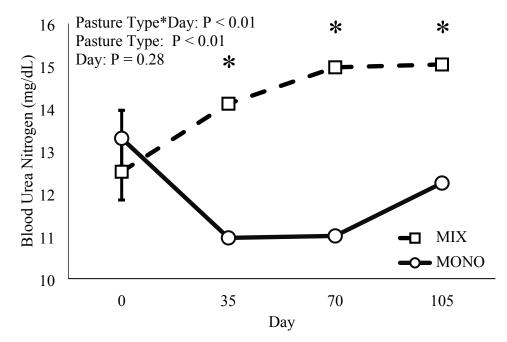
Note: Estimates are based on 100 animal units of replacement dairy heifers with d on feed for each treatment equal to the number of d estimated to reach the optimal breeding weight of 250 kg plus 30 additional d to allow for pregnancy testing and sale as either short bred heifer or open heifer.

¹Treatments include: Meadow Bromegrass (MB), Meadow Bromegrass + BFT (MB+BFT) Orchard Grass (OG), Orchard Grass + BFT (OG+BFT), Perennial Ryegrass (PR), Perennial Ryegrass + BFT (PR+BFT), total mixed ration (TMR). All treatments have n = 9, except TMR has n = 6. ²Pasture types include: Pastures with BFT (Mix) and pastures without BFT (Mono). Both mixed pastures and monoculture pastures have n = 36.


³The total establishment costs for each pasture treatment are considered the initial cost of investment into the pasture treatments and are equal to the combined planting and seed costs (\$/ha) for each treatment multiplied by the total amount of hectares needed to produce the required forage. The required forage is the amount necessary for the DOF of each treatment to allow the 100 AUs to reach the target breeding weight of 250 kg, have pregnancy tests administered, and be sold as short bred or open heifers.

⁴The annual net financial impact is the sum of the positive and negative changes within the partial budget of each pasture treatment.

⁵The payback period is calculated as the pasture treatment total establishment cost divided by the annual net financial impact. A "N/A" payback period indicates that the investment is expected to have a negative payback period indicating it would never be expected to pay off.


⁶Break-even organic premium is the premium (\$/head) required on organic dairy heifers for the annual net financial impact of a pasture treatment to be equal to \$0.

 3,4,5,6 Values within each column that have a different superscript are different (P < 0.05) from one another. Those with treatment differences indicated by superscripts had an overall treatment effect of P < 0.05.

816

Figure 1. These data represent growth of Jersey heifers grazed in 2016, 2017 or 2018. A total of 192 heifers were used over the three-year period with two heifers per block in year 2016 and three heifers per pasture in 2017 and 2018. Each block of heifers serves as the experimental unit with treatments being either grass only pastures (MONO, n = 36) or grass interseeded with Birdsfoot Trefoil (MIX, n = 36). Weights were collected every 35 d over a 105 d period and analyzed to show the effects of pasture type*day, pasture type, and day. Differences (P < 0.05) between pasture types within each time point are indicated with a *.

824 Figure 2. These data represent blood urea nitrogen concentrations of Jersey heifers grazed in 825 2016, 2017 or 2018. A total of 192 heifers were used over the three-year period with two heifers 826 per block in year 2016 and three heifers per pasture in 2017 and 2018. Each block of heifers 827 serves as the experimental unit with treatments being either grass only pastures (MONO, n = 36) 828 or grass interseeded with Birdsfoot Trefoil (MIX, n = 36). Blood samples were collected every 829 35 d over a 105 d period and were quantified and analyzed to show the effects that pasture 830 type*day, pasture type, and day can have on heifer blood urea nitrogen concentrations. 831 Differences (P < 0.05) between pasture types within each time point are indicated with a *. 832