

University of New Hampshire College of Life Sciences and Agriculture

Kelp for Supplemental Feeding of Dairy Cows on Pasture

André F. Brito, Veterinarian, M.S., Ph.D. Associate Professor of Dairy Cattle Nutrition and Management Department of Agriculture, Nutrition, and Food Systems University of New Hampshire Email: andre.brito@unh.edu Office phone: (603) 862-1341

Outline

Supplementation of kelp meal

Studies done at UNH

○ Use of canola for grazing

Final considerations

UNH Burley-Demeritt Organic Dairy Research Farm

Credit: Scott Ripley/UNH Communications and Public Affairs

UNH Burley-Demeritt Organic Dairy Research Farm

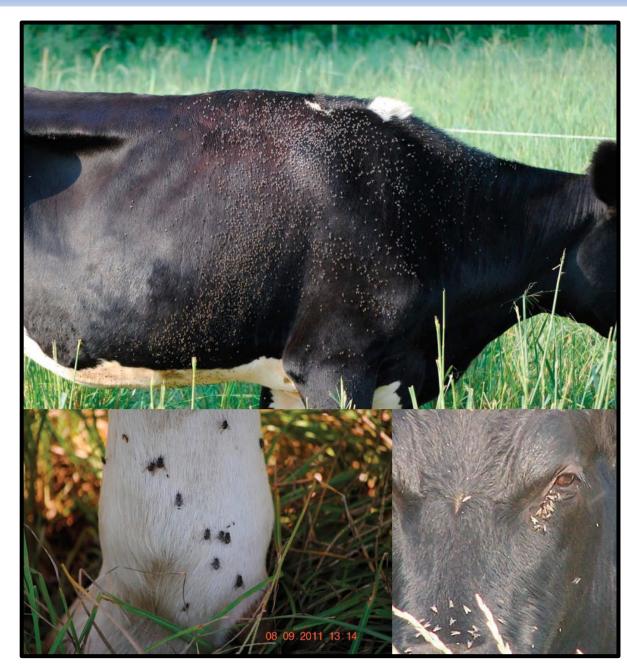
Kelp meal supplementation

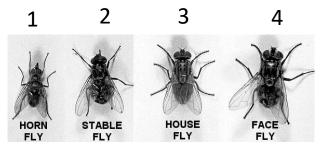
Kelp meal nutritional properties

- Brown seaweed (Ascophyllum nodosum) rich in minerals, particularly iodine (Antaya et al., 2015)
- Contains a wide spectrum of nutritional compounds including polyunsaturated fatty acids (PUFA), polyphenols, bioactive peptides, and vitamins (Kumari et al., 2010; Tierney et al., 2010; Fitzgerald et al., 2011)
- Rich in phlorotannin, a polyphenol similar to terrestrial tannins known to affect carbohydrate and protein utilization, and to inhibit bacterial growth (Ragan and Glombitza, 1986; Wang et al., 2008, 2009)
- High concentrations of antioxidants such as β-carotene and fucoxanthine, which may improve animal health (Haugan and Liaaen-Jensen, 1994; Allen et al., 2001)

Use of kelp meal in organic dairy farms in the Northeast and Midwest US

- 59% of organic dairy farmers feed kelp meal in the Northeast (Antaya et al., 2015)
- 49% of organic dairy farmers feed kelp meal in Wisconsin (Hardie et al., 2014)
- 83% of organic dairy farmers feed kelp meal in Minnesota (Sorge et al., 2016)


Why organic dairy farmers feed kelp meal in the Northeast?


- It improves body condition and overall animal appearance
- It decreases milk somatic cell count, reproductive problems, and incidence of "pinkeye" (i.e., infectious bovine keratoconjunctivitis)
- It helps with control of nuisance flies during the grazing season

Source: Antaya et al. (2015)

- 1. Haematobia irritans L.,
- 2. Stomoxys calcitrans L.
- 3. Musca domestica
- 4. Musca autumnalis, De Geer

Pasture vs. kelp meal nutritonal composition

	Feeds				
Item	Pasture Kelp meal				
	% of dry matter (unle	ess otherwise noted)			
Crude protein	19.5	10.2			
Neutral detergent fiber	51.0	53.9			
Acid detergent fiber	31.4	39.9			
Ca	0.76	1.31			
Р	0.36	0.25			
Mg	0.28	0.69			
К	2.68	3.53			
S	0.28	2.84			
l, ppm	0.62	820			

Sources: Antaya et al. 2015; Hafla et al. (2016); Brito et al. (unpublished)

Nutritional comparison of kelp meal products

	Kelp meal products						
Item	Thorvin 1	Thorvin 2	TASCO 1	TASCO 2	Sealife		
	%	% of dry matter (unless otherwise note)					
Ca	1.31	1.28	1.12	1.19	1.13		
Р	0.25	0.21	0.16	0.16	0.15		
Mg	0.69	0.80	0.89	0.84	0.79		
К	3.53	2.57	2.51	2.37	1.76		
S	2.84	2.71	3.37	3.30	3.27		
Na	3.90	3.59	3.42	3.39	3.14		
Cl	4.70	4.73	3.18	3.30	2.95		
Se	<0.041	-	-	0.025	-		
l, ppm	820	727	356	775	-		

Sources: Antaya et al. 2015; Brito et al. (unpublished)

Frequency of pastures that did not meet minimum requirements

	to Dairy NRC	ements according (2001), % of total otherwise noted	Samples not meeting m animal requirements, % unless otherwise noted			
Item	680-kg 454-kg Holstein, ¹ Jersey, ² 25 kg/d milk 25 kg/d milk		680-kg Holstein,¹ 25 kg/d milk	454-kg Jersey,² 25 kg/d milk		
Forage quality						
CP	14.1	16.1	9.21	20.8		
ADF	17–21 min	17–21 min	0.00	0.00		
NDF	25-33 min	25–33 min	0.00	0.00		
NE, Mcal/kg	1.37	1.54	35.5	85.8		
Macrominerals						
Calcium	0.62	0.57	30.8	22.1		
Phosphorus	0.32	0.33	19.2	26.1		
Magnesium	0.18	0.18	2.89	2.89		
Potassium	0.24	0.24	0.00	0.00		
Sulfur	0.22	0.20	11.1	6.58		

n = 380 pasture samples collected from 2012-1015 in organic dairies in NH, VT, ME, NY, and PA Source: Hafla et al. (2016)

Minerals requirement in cows fed pasture supplemented with kelp meal

Item	Required ¹	Pasture	Kelp	Total provided	Net (+/-)
Ca, g/day	130.2	111.6	1.37	138.2	-7.97
P, g/day	67.2	64.8	0.21	65.0	-2.19
Mg, g/day	37.8	50.4	0.91	51.3	+13.5
K, g/day	50.4	482.4	2.90	485.3	+434.9
S, g/day	46.2	50.4	3.53	53.9	+7.73
I, mg/day	10.5	11.2	76.3	87.5	+77

¹Based on a 1,500-lb Holstein cow consuming 46 lb of dry matter and producing 55 lb of milk with 3.5% milk fat and 3% milk protein

²Assuming all pasture diet (40 lb of pasture intake/day)

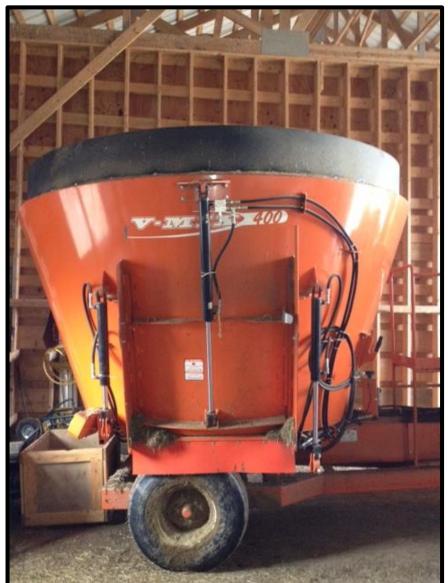
³Assuming 4 oz of kelp meal consumed daily

Kelp meal studies objectives at UNH

- Investigate the impact of kelp meal supplementation on milk production, nutrient digestibility, animal health, and methane (CH₄) emissions during the grazing and winter seasons
- Improving the understanding of iodine metabolism in dairy cows fed kelp meal year-round

General study procedures

- Twenty lactating Jersey cows averaging 175 days in milk, 45 lb/d of milk production, and 972 lb of BW in the beginning of the study were used
- Cows were randomly assigned to 1 of 2 diets: **0 or 4 oz of kelp meal**
- Cows were milked twice daily and have access to a new strip of fresh pasture after every milking
- TMR was supplemented twice daily after milking
- Feeds, milk, blood, feces, and urine samples were collected monthly throughout the study
- Gaseous measurements were taken using the GreenFeed system

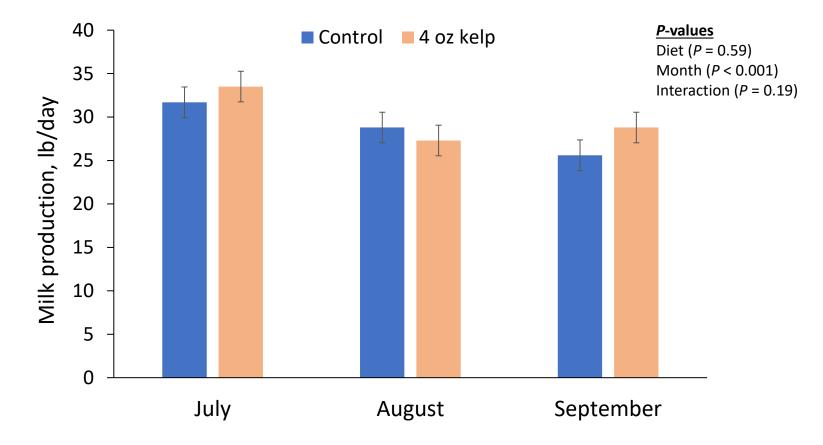


Pasture nutritional composition

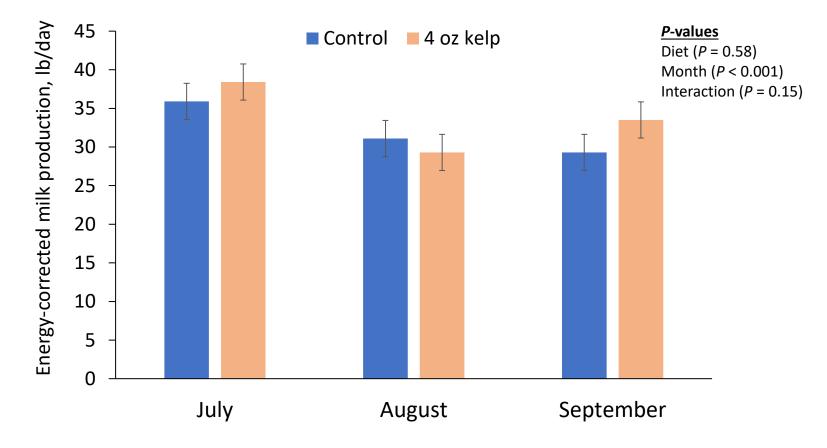
	Pasture						
Item	July	August	September	October			
Pre-grazing biomass, lb/acre	1,988	1,516	1,410	1,084			
Crude protein, %	13.9	16.5	17.5	18.1			
Neutral detergent fiber, %	59.0	59.6	66.0	63.7			
Acid detergent fiber, %	33.0	35.1	34.1	33.3			
Sugars, %	9.10	6.40	7.60	5.70			
Starch, %	1.70	0.30	0.40	0.70			
NEI, Mcal/kg	1.21	1.23	1.08	1.04			
lodine, ppm	0.39	0.43	0.52	0.63			
Glucosinolates, ppm	105	63.3	102	88.0			

NEl = net energy of lactation Source: Brito et al. (unpublished)

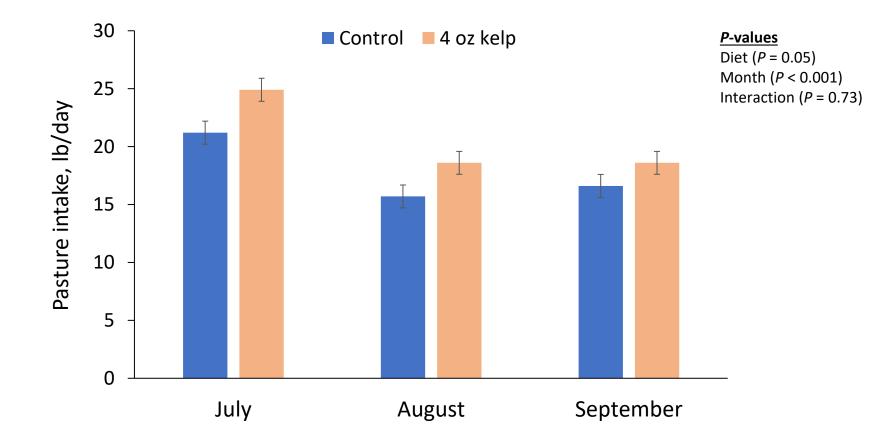
Vertical mixer


TMR mixer

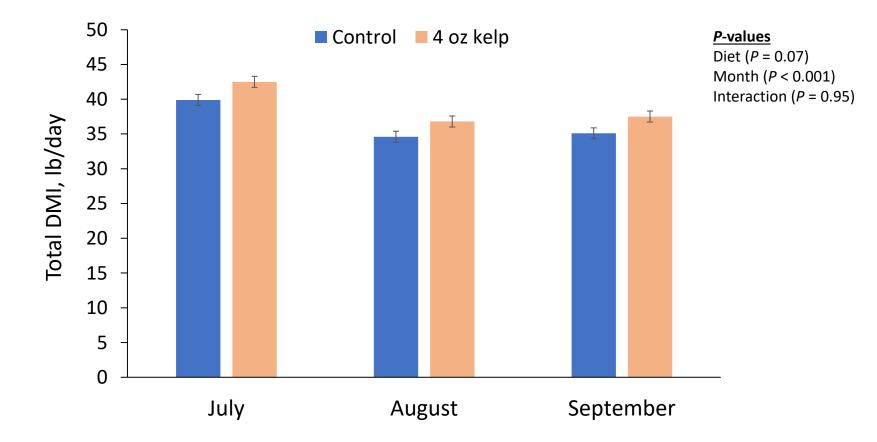
Calan doors system


Milk production in grazing cows fed kelp meal

Source: Brito et al. (unpublished)



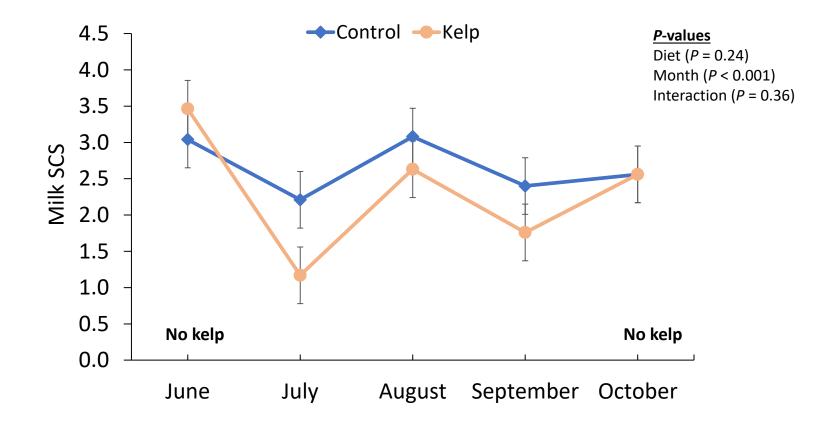
Energy-corrected milk production in grazing cows fed kelp meal


Pasture intake in grazing cows fed kelp meal

Source: Brito et al. (unpublished)

Total diet DMI in grazing cows fed kelp meal

DMI = dry matter intake Source: Brito et al. (unpublished)


Milk composition and body condition score (BCS) in grazing cows fed kelp meal

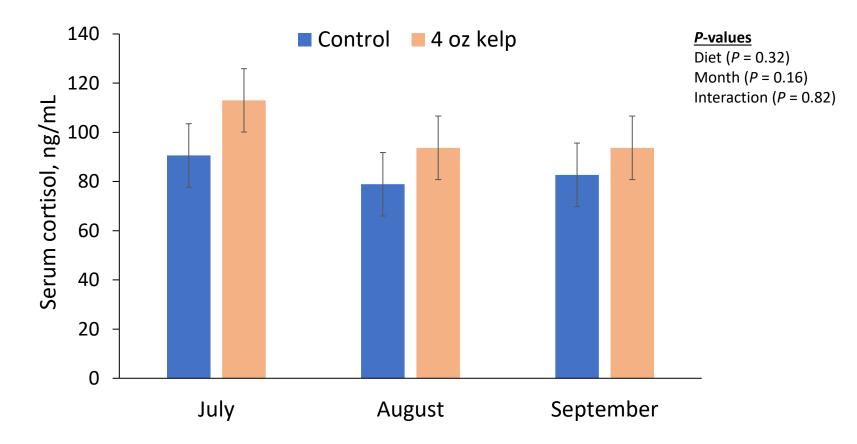
	D	viets			<i>P</i> -valu	es
Item	Control	Kelp meal	SEM	Diet	Month	Interaction
Milk fat, %	4.19	4.38	0.19	0.52	<0.01	0.84
Milk fat, lb/day	1.21	1.30	0.08	0.56	<0.001	0.21
Milk protein, %	3.41	3.40	0.07	0.99	<0.001	0.98
Milk protein, lb/day	0.97	1.01	0.07	0.67	0.01	0.07
MUN, mg/dL	12.5	13.1	0.46	0.39	0.06	0.07
BCS, point/28 days	3.33	3.30	0.11	0.83	<0.001	0.13

Source: Brito et al. (unpublished)

Milk somatic cell score (SCS) in grazing cows fed kelp meal

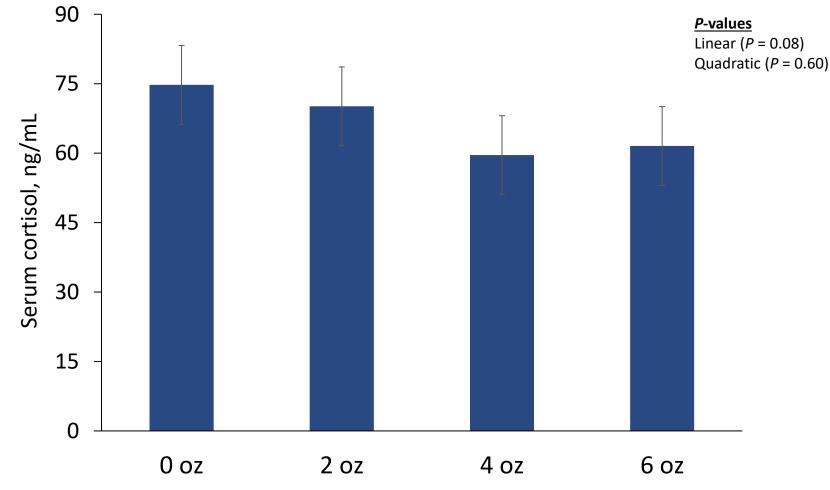
Milk SCS = log base 2 (SCC/100) Source: Brito et al. (unpublished)

Apparent total-tract digestibility of nutrients in grazing cows fed kelp meal

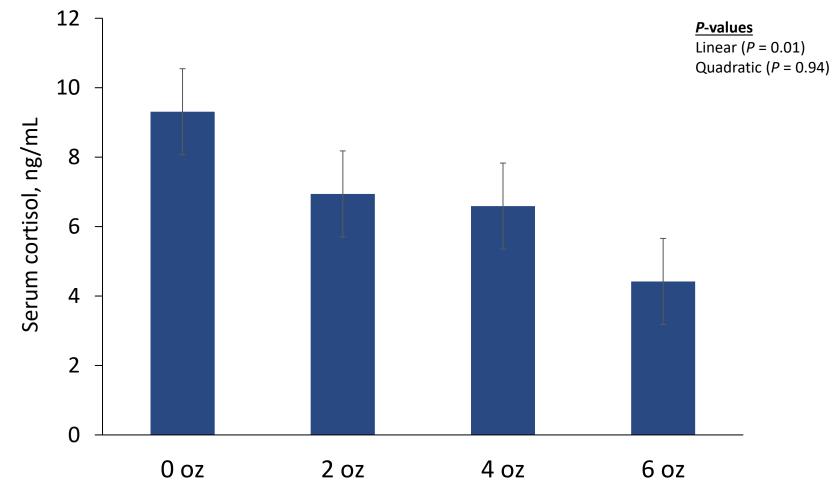

	D	viets			<i>P</i> -valu	es
Item	Control	Kelp meal	SEM	Diet	Month	Interaction
Dry matter, %	69.7	69.2	0.22	0.13	<0.001	0.39
Organic matter, %	71.2	70.5	0.25	0.11	<0.001	0.20
NDF, %	61.6	61.7	0.53	0.85	<0.001	0.76
ADF, %	55.8	56.1	0.89	0.83	<0.001	0.05
Crude protein, %	64.7	63.7	0.59	0.13	<0.001	0.05

NDF = neutral detergent fiber ADF = acid detergent fiber

Source: Brito et al. (unpublished)


Serum cortisol in grazing dairy cows fed kelp meal

Source: Brito et al. (unpublished)



Serum cortisol in dairy cows fed kelp meal during the winter

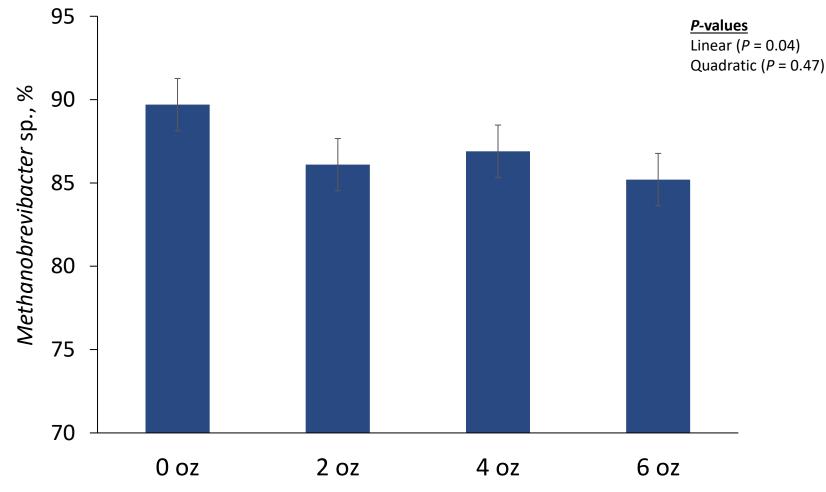
Source: Antaya et al (2015)

Serum cortisol in confined dairy cows fed kelp meal during the summer

Source: Brito et al. (unpublished)

The portable GreenFeed gas emission monitoring system

Methane (CH₄) emissions in grazing dairy cows fed kelp meal


	D	viets			<i>P</i> -valu	es
Item	Control	Kelp meal	SEM	Diet	Month	Interaction
CH ₄ production, g/day	317	321	15.9	0.83	<0.001	0.94
CH ₄ yield, g/kg DMI	18.1	17.2	0.64	0.31	<0.001	0.34
CH ₄ intensity, g/kg ECM	21.4	21.0	1.62	0.86	0.11	0.45

DMI = dry matter intake ECM = energy-corrected milk Source: Brito et al. (unpublished)

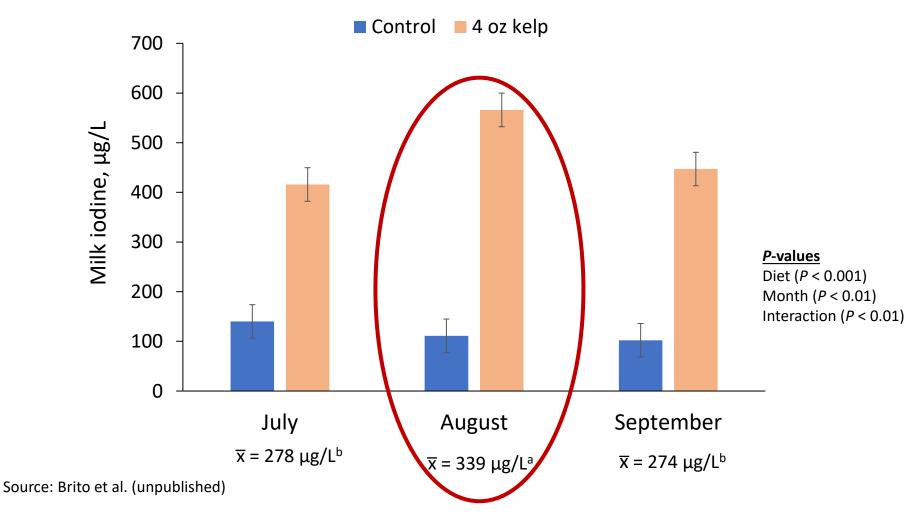
Proportion of *Methanobrevibacter* sp. in rumen fluid of confined dairy cows fed kelp meal during the summer

Source: Brito et al. (unpublished)

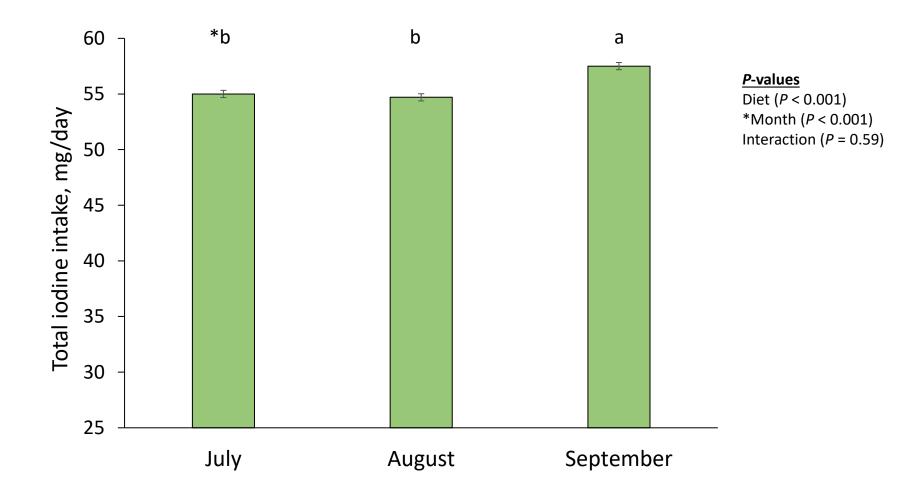
Summary

 Kelp meal supplementation maintained or slightly improved production of milk and milk components during the grazing season

 Effects of kelp meal supplementation of blood cortisol, milk somatic cells count, and CH₄ emissions deserve further investigations


Kelp meal studies objectives at UNH

- Investigate the impact of kelp meal supplementation on milk production, nutrient digestibility, animal health, and methane (CH₄) emissions during the grazing and winter seasons
- Improving the understanding of iodine metabolism in dairy cows fed kelp meal year-round



Milk iodine concentration in grazing cows fed kelp meal

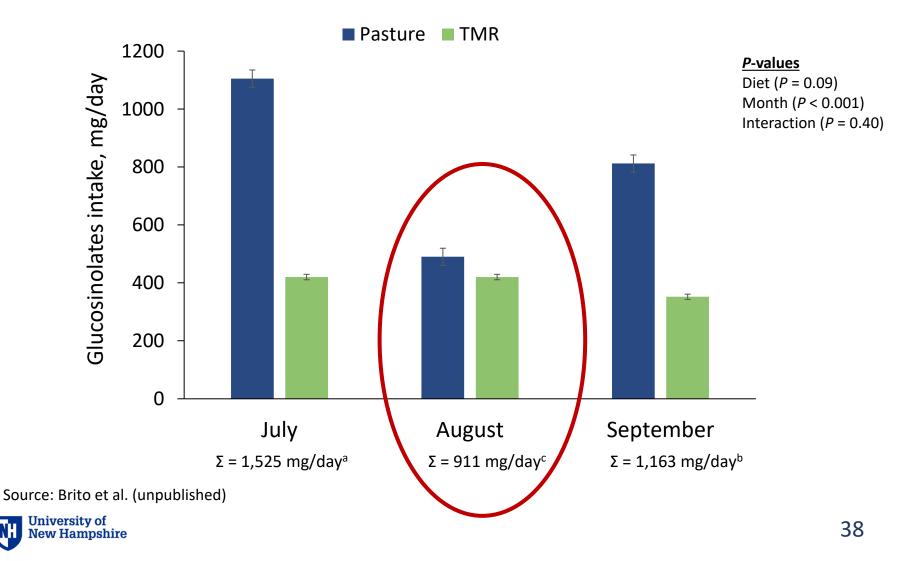
Total iodine intake during the grazing season

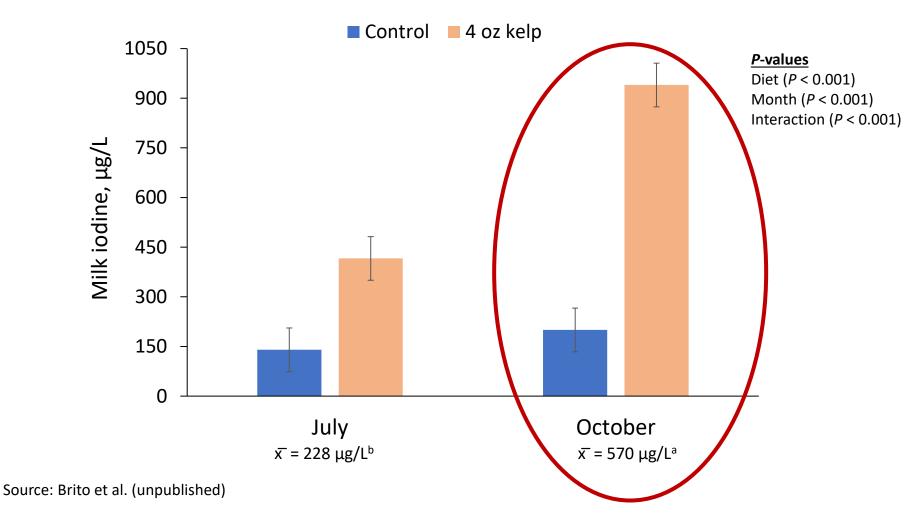
Source: Brito et al. (unpublished)

University of New Hampshire

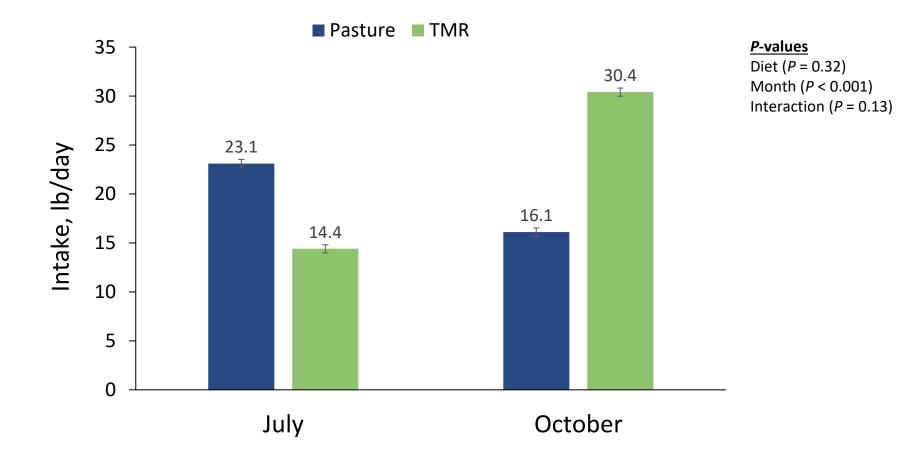
General structure of glucosinolate

R = CN = OSO₃⁻

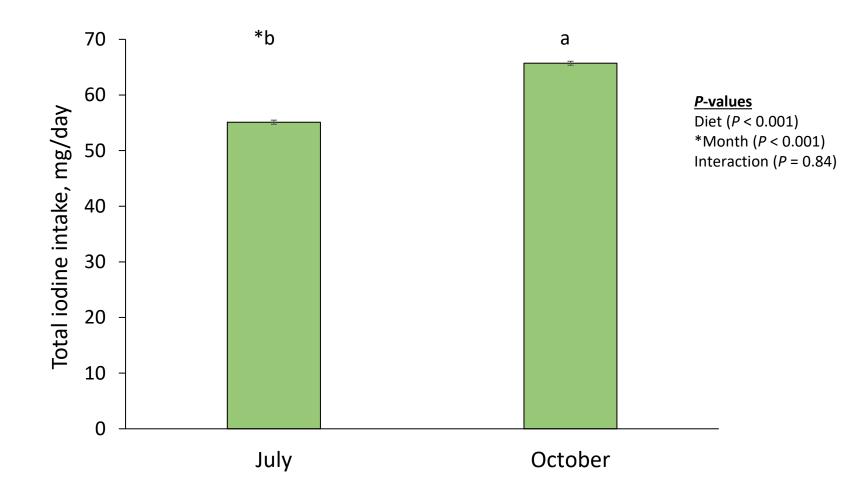

Source: Tripathi and Mishra (2007)

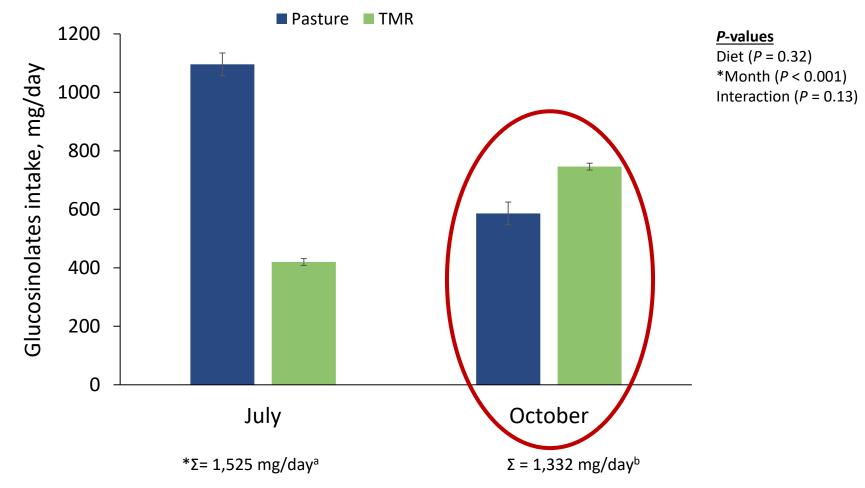


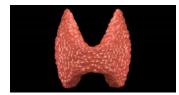
Glucosinolates intake during the grazing season



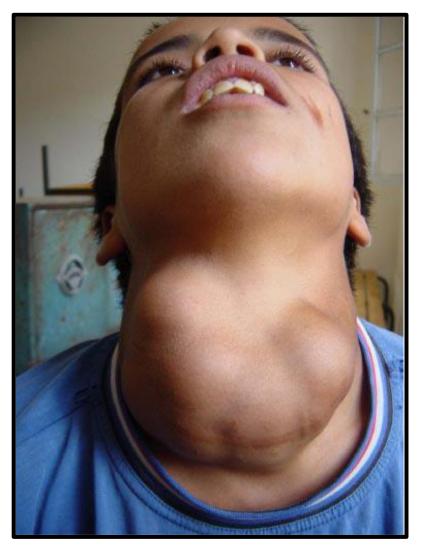
Milk iodine concentration in grazing cows fed kelp meal


Pasture and TMR intake during the grazing season


Source: Brito et al. (unpublished)

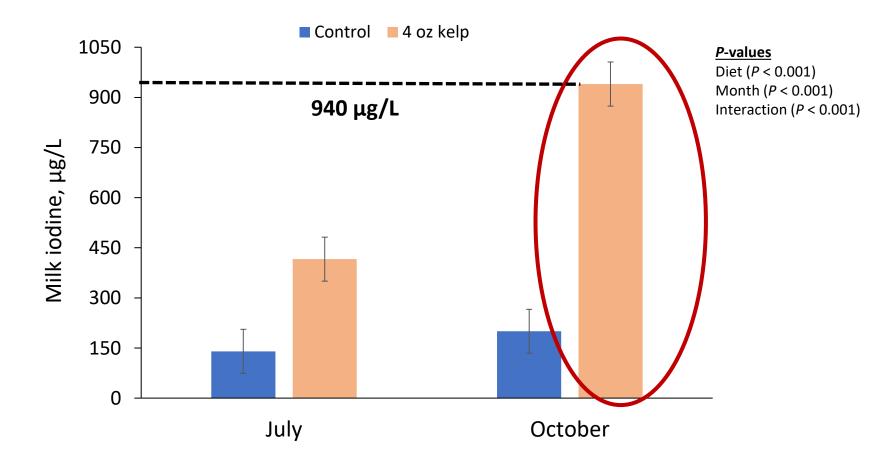

Total iodine intake during the grazing season

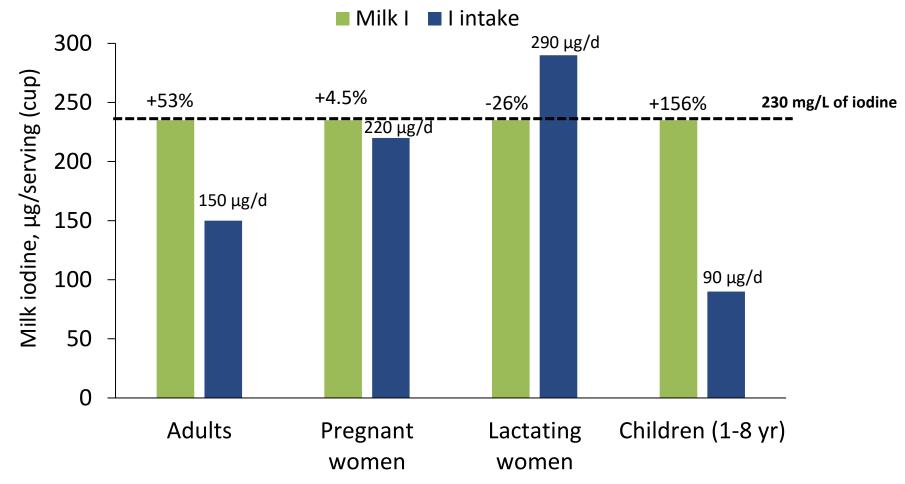
Glucosinolates intake during the grazing season



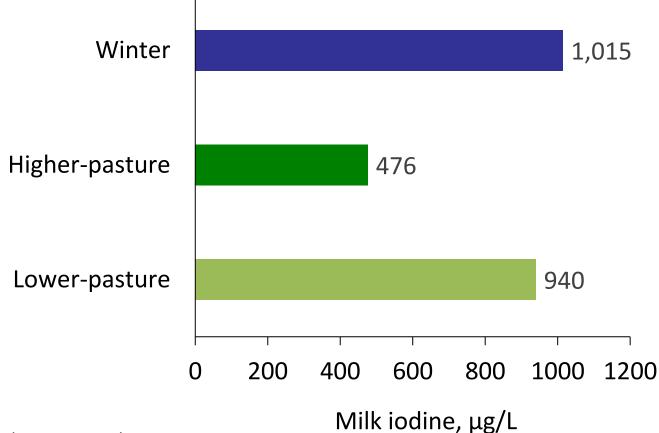
Tyroide hormone functions

- Regulation of metabolic processes essential for normal growth and development (Oetting and Yen, 2007; Cheng et al., 2010; Brent, 2012)
- Regulation of metabolism in adults (Oetting and Yen, 2007; Cheng et al., 2010; Brent, 2012)
- Stimulation of lipogenesis and lipolysis (Oppenheimer et al., 1991)
- Influence key metabolic pathways that control energy balance by regulating energy storage and expenditure (Oetting and Yen, 2007; Liu and Brent, 2010; Iwen et al., 2013)


Large nodular goiter in a 14-year old boy


Source: Zimmermann 2009 (Endoc. Rev. 30:376–408)

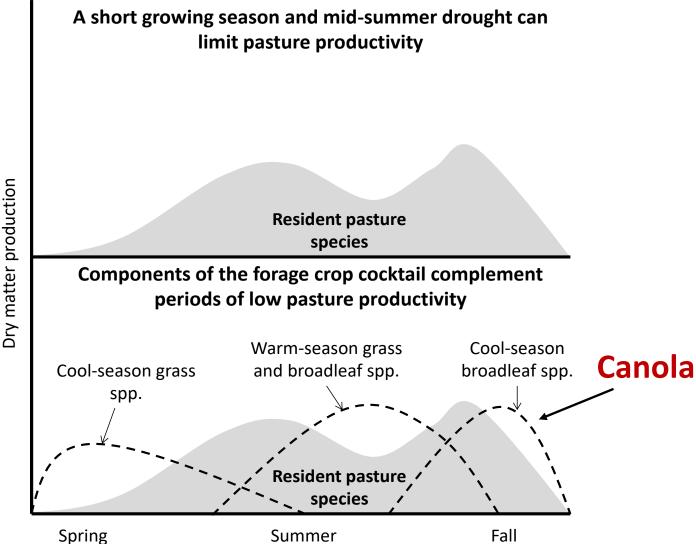
Milk iodine concentration in grazing cows fed kelp meal


Iodine intake per serving of milk from cows fed 4 oz of kelp relative to recommended iodine intake for humans¹

¹U.S. Institute of Medicine (2001) recommendations

Milk iodine concentration in dairy cows fed 4 oz of kelp meal during the winter¹ and summer seasons²

¹Winter study: Antaya et al. 2015 ²Summer study: Brito et al. (unpublished)


Summary

 Kelp meal supplementation effectively increases the concentration of iodine in milk

 Therefore, there are concerns and opportunities regarding the impact of iodine in human health

Use of alternative forage sources for grazing

General study procedures

- Eighteen mid-lactation Jersey cows
- Cows were randomly assigned to 1 of 2 diets: TMR or TMR plus grazed canola
- Diet was formulated to include 35% (dry matter basis) of canola as grazed forage offered after the afternoon milking
- Cows were milked and fed twice daily
- Feeds, milk, blood, feces, urine, and rumen fluid samples were collected throughout the 6-week study
- Methane was measured using the GreenFeed system

Cows grazing canola

Pre-grazing and post-grazed canola field

Pre-grazing and post-grazed canola field

Pre-grazing canola field after first frost

Annual ryegrass vs. Canola

	Feeds					
Item	Annual ryegrass	Canola				
	% of dry matter (unless otherwise noted)					
Crude protein	30.2	28.2				
Neutral detergent fiber	29.7	16.1				
Acid detergent fiber	21.2	10.8				
Lignin	5.3	0.8				
Sugars	21.6	31.4				
Glucosinolates	0.0	11.7				
NEI, g/kg	1.68	1.98				
Са	0.64	1.78				
Р	0.28	0.40				

Source: Dillard et al. (2018)

Milk production and composition in dairy cows fed TMR or TMR plus grazed canola (CAN)

	Diets			P-values			
Item	TMR	TMR+CAN	SEM	Diet	Week	Interaction	
Milk, lb/day	49.1	45.9	0.84	<0.01	0.24	0.66	
4% FCM, lb/day	58.9	56.5	1.54	0.23	0.57	0.50	
ECM, lb/day	65.8	62.8	1.56	0.15	0.69	0.51	
Milk fat, %	5.28	5.35	0.11	0.65	0.03	0.58	
Milk fat, lb/day	3.06	2.98	0.36	0.48	0.30	0.50	
Milk protein, %	3.70	3.91	0.04	<0.01	<0.01	0.95	
Milk protein, lb/day	1.81	1.78	0.04	0.45	0.44	0.74	
MUN, mg/dL	11.1	13.5	0.36	<0.01	<0.01	0.16	

FCM = fat-corrected milk

ECM = energy-corrected milk

Source: Brito et al. (unpublished)

Methane emissions quantification using the GreenFeed system

Methane (CH₄) emissions in dairy cows fed TMR or TMR plus canola (CAN)

	Diets			P-values		
Item	TMR	TMR+CAN	SEM	Diet	Week	Interaction
CH ₄ production, g/day	473	418	10.4	<0.01	0.93	0.49
CH ₄ yield, g/kg DMI	18.4	16.9	0.48	0.03	0.67	0.29
CH ₄ intensity, g/kg ECM	16.4	15.0	0.41	0.02	0.73	0.30

DMI = dry matter intake ECM = energy-corrected milk Source: Brito et al. (unpublished)

Final considerations

- Kelp meal supplementation may provide farmers with opportunities to improve animal health, but further research is needed
- Kelp meal is a high cost supplement (\$50-60/50-lb bag)
- There is a critical need for develoing a comprehensive evaluation of iodine concentration in retail organic milk
- Canola seems to be an attractive option for filling gaps in forage production during the fall season

Acknowledgments

University of New Hampshire College of Life Sciences and Agriculture

United States Department of Agriculture National Institute of Food and Agriculture

Questions?

