University of Massachusetts - Amherst ScholarWorks@UMass Amherst

Cranberry Station Extension meetings

Cranberry Station Outreach and Public Service Activities

1-1-2014

2014 Update Mtg: Tile Drainage in Massachusetts Cranberry Production - Implementation and Best Management Practices

Casey Kennedy USDA ARS, Casey.Kennedy@ARS.USDA.GOV

Carolyn J. DeMoranville University of Massachusetts - Amherst, carolynd@umass.edu

Peter Jeranyama UMass Cranberry Station, peterj@umass.edu

Hilary A. Sandler University of Massachusetts - Amherst, hsandler@umass.edu

Frank L. Caruso UMass Cranberry Station, fcaruso@umass.edu

See next page for additional authors

Follow this and additional works at: http://scholarworks.umass.edu/cranberry extension

Part of the Agriculture <u>Commons</u>, and the <u>Horticulture Commons</u>

Kennedy, Casey; DeMoranville, Carolyn J.; Jeranyama, Peter; Sandler, Hilary A.; Caruso, Frank L.; and Alverson, Nick, "2014 Update Mtg: Tile Drainage in Massachusetts Cranberry Production - Implementation and Best Management Practices" (2014). Cranberry Station Extension meetings. Paper 173.

http://scholarworks.umass.edu/cranberry_extension/173

This Article is brought to you for free and open access by the Cranberry Station Outreach and Public Service Activities at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Cranberry Station Extension meetings by an authorized administrator of ScholarWorks@UMass $Amherst.\ For\ more\ information,\ please\ contact\ scholarworks@library.umass.edu.$

SARE Tile Drainage Project Update

- Title: Tile drainage in Massachusetts cranberry production – implementation and best management practices
- Scientists: Carolyn DeMoranville, Casey
 Kennedy, Peter Jeranyama, Hilary Sandler,
 Frank Caruso
- Students: Nick Alverson (MS, UMass Amherst)

Purpose

- Develop tile drainage installations that increase agronomic benefit and reduce environmental impact
- Specific research objectives:
 - Determine optimal horizontal drain spacing
 - Quantify potential for elevated nitrogen and phosphorus loss in tile drainage
 - Evaluate hydrological behavior, crop yield, fruit disease, and weed responses to drain depth

Horizontal Spacing

- Optimum horizontal spacing is 20 ft
 - Grower survey showed most common, accommodating existing buried sprinkler irrigation pipes
 - Field experimentation has confirmed that this spacing (compared to 15- or 30-foot) is associated with good plant growth and the greatest crop yield

Nutrient Monitoring

Tile Flow Monitoring

Pipes linking tile drains

Tile flow measurement

Storm Response

- Discharge from TD3 and TD4 ceased at 18:00 on 8/2/13, coinciding with submergence of the tiles.
- Total discharge from tiles equaled about half the discharge exiting the flume, and 1/3 of the rain deposited on the cranberry bed.

Drain Depth Study

Renovated Bog

2 Drain Depths: 6 in and 12 in

Tile Installation Design

- Block design
- 2 treatments: 6 in (red) and 12 in (blue) drain depth
- Replicated 7 times
- Measure soil
 moisture/tension,
 crop yield, fruit rot,
 and weeds

Looking for Grower Participants

- Would like to evaluate deeper depths, > 12 inches
- Please contact us if you're interested: casey.kennedy@ars.usda.gov

Questions?