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Abstract
Soil analysis is a key practice to increase the efficiency of nutrient management in

agriculture. Since the early 20th century, increasingly sophisticated methods have

been developed to describe and manipulate the inherent spatial variability in soil

chemical properties within the realms of classical and spatial statistics. In this paper,

we reviewed design-based (classical) and model-based (geostatistical) sampling to

suggest field-scale sampling strategies consistent with common agronomic manage-

ment goals in annual crop production systems. To assess the relevance of common

sampling methods in relation to practice, current extension recommendations across

the United States were compared with results from peer-reviewed literature. Despite

decades of research, specific recommendations for sample sizes, sampling depths,

numbers of soil cores, and layouts were highly variable for classical and geostatistical

approaches. Mobile nutrients, such as NO3, are frequently lacking in spatial struc-

ture and rarely are recommended for site-specific management. Nonmobile nutrients,

such as P, are more spatially dependent and exhibit nested spatial structures that are

inconsistent across fields. For these reasons, we recommend design-based sampling in

most situations for simplicity, cost, and objectivity. The common design-based sam-

pling protocol prescribes collection of individual cores in a zig-zag pattern that are

combined to produce a composite sample. This protocol should be amended because

it is not sufficiently randomized and is inadequate for log-normally distributed vari-

ables. To facilitate site-specific management, we recommend structured approaches

for delineating management zones or strata and for researchers to systematically enu-

merate confounding variables while explicitly defining the scope of inference for

future soil sampling studies.

1 INTRODUCTION

Surface water eutrophication, nutrient pollution, and inflated

input costs from improper fertilizer application have plagued

Abbreviations: EOSD, economic optimum sample density; MZ,

management zone; SOC, soil organic carbon; SOM, soil organic matter;

SRS, simple random sampling; TRV, Theory of Regionalized Variables.
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row-crop agriculture since fertilizer use became widespread

in the second half of the 20th century (Carpenter et al., 1998).

Only 16% of applied P is taken up by cereal crops (Dhillon,

Guilherme, Driver, Figueiredo, & Raun, 2017), and 47% of

applied N is taken up by all crops (Ladha et al., 2016), with

the rest remaining in croplands or lost via runoff, leaching,

and gaseous emissions. The 4Rs concept (i.e., choosing the

right fertilizer to apply at the right rate, right time, and in the
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right place) has frequently been used to minimize the over-

application of fertilizer (Peterson & Bruulsema, 2019). Based

on continuing high levels of surface water pollution and low

percentages of fertilizer that end up in crop biomass, there

remains room for improving application of the 4Rs across het-

erogeneous farm landscapes.

Three of the 4Rs depend on knowing the background level

of soil nutrient availability at specific dates across farms and

within fields, which in turn relies on proper soil sampling pro-

tocols and techniques. Given the inability to know exact nutri-

ent concentrations at every point in space, uncertainty in field

and subfield scale statistics is inevitable. Laboratory tech-

niques for nutrient analysis typically contribute only 1.8 to 5%

to the overall uncertainty of nutrient concentration estimates,

depending on the nutrient measured and its overall concen-

tration (Gustavsson, Luthbom, & Lagerkvist, 2006; Hurisso,

Culman, & Zhao, 2018), with the remaining uncertainty aris-

ing from inherent spatiotemporal variability and agronomic

management. Measuring or accounting for the spatial vari-

ability in nutrients and understanding its implications for fer-

tilizer application is crucial for moving closer to the ideal of

the 4Rs.

Beginning in the 1970s, recommendations for soil sam-

pling have become more sophisticated, with numerous

sources (e.g., extension publications, agronomic consultants,

and private laboratory recommendations) providing sugges-

tions for site-specific or stratified soil sampling methods.

These recommendations are mirrored by an increase in the

number of academic publications investigating the strength

and nature of spatial variability in a wide variety of landscapes

and cropping systems. In all sources (academic and industry),

recommendations are wide ranging. For example, in a notably

large-scale study of spatial variability within 23 farm fields,

the density of soil sampling required to adequately character-

ize spatial variation in soil P ranged from <30 to 105 m (Lau-

zon, O’Halloran, Fallow, Bertoldi, & Aspinall, 2005). Sam-

pling requirements thus differ for different locales and can

vary for different nutrients measured in the same field (Cahn,

Hummel, & Brouer, 1994).

The potential causes of variability are numerous and lead

to differing sampling requirements. Soil type, biota, climate,

and agronomic practices may all influence the scale and scope

of variation. The goal of sampling, whether field-scale char-

acterization or site-specific mapping, can drastically affect

the sampling plan. Finally, differences in study methodolo-

gies, such as depth of sampling, sampling month, and sta-

tistical analysis, make it difficult to develop sampling plans

that provide reliable estimates of the expected accuracy and

precision.

An understanding of optimal soil sampling methods across

the major crops, soils, and environments will improve the

uptake efficiency of nutrients applied to grow our food,

feed, and fiber and reduce the unsustainable amount of

Core Ideas
• Design-based (classical) sampling is recom-

mended in most fields.

• Zig-zag sampling patterns and soil core composit-

ing should be avoided where possible.

• Fewer soil cores per unit area are needed as field

size increases.

• Extrapolation from grid-based sampling is limited

by confounding variables.

water and air pollution that occurs during crop production.

The objectives of this review are to (i) provide a historical

overview of past and current soil sampling strategies used

in production agriculture, (ii) summarize how past and

current soil sampling strategies are used to guide nutrient

applications in production agriculture, and (iii) guide future

research and practical recommendations for soil sampling.

The scope of the review was limited to annual row-crop

agriculture and within-field sampling.

We first reviewed historical peer-reviewed soil sampling

literature in row-crop agriculture to contextualize current

recommendations and practice. We also categorized soil

sampling methods and described recent research that has

influenced recommendations about the configuration and

density of sampling. The dichotomy of design-based and

model-based sampling (classical stratification and random-

ization versus grid-based geostatistical sampling, defined

in more detail below) was used to guide the practitioner

toward sampling configurations consistent with their desired

end use. Where appropriate, we quantitatively compared

findings across agricultural and bioclimatic environments.

We used the United States as a case study to characterize

disparities between common sampling recommendations

and academic understanding. In this context, the US Land

Grant University Cooperative Extension System served as the

source of recommendations. Finally, we present suggestions

for soil sampling protocols to guide fertilizer and manure

applications and to meet the needs for regulatory compliance,

specifically concerning P pollution.

2 METHOD

We searched agricultural extension websites in each US state

for specific pages or publications on soil sampling to capture

the current state of soil sampling recommendations. Soil sam-

pling protocols and recommendations were included in our

analysis only if they referenced production agriculture (not

home lawns or gardening). Three US-focused, peer-reviewed,

and extension-oriented journals were also searched to assess
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whether public-targeted extension publications were con-

sistent with academic extension literature. For this reduced

scope, the search terms were limited to “soil sampling,”

and the journals included were the Journal of Production
Agriculture; Journal of Extension; and Crop, Forage and
Turfgrass Management (including their previously separate

constituent journals).

For the peer-reviewed academic literature review, we

searched the Academic Search Premier and CAB Abstracts

academic databases using the terms “soil AND (sampling OR

[spatial OR variogram OR kriging]) AND (nutrient OR nitro-

gen OR phosphorus) AND agriculture.” Our search was lim-

ited to papers and books written in English. The search was

conducted in December 2018, and any duplicate references

were removed.

To be included in the analysis, each study (i) examined

nutrient management for annual row-crop agriculture; (ii)

studied within-field variation (not between-field, although

multiple fields could be included); (iii) reported at least

10 within-field observations to allow for descriptive statis-

tics; (iv) determined the variability of measured nutrients;

(v) measured at least one of the following nutrients/soil

parameters: NO3–N, NH4–N, plant mineralizable N, plant-

available N, P, total C, total N, soil organic matter (SOM),

or soil organic carbon (SOC), Ca, Mg, Al, B, Cu, Fe,

Mn, Zn, S, Pb, and pH; and (vi) used either empirical or

modeling-based methods of analysis. If the study was mod-

eling based, the criterion of 10 within-field observations was

omitted.

The database search was made more comprehensive by

gathering first- and second-order references cited by the ini-

tial set of publications. Titles and abstracts were read to assess

whether each publication fit the inclusion criteria. If so, the

text was evaluated for the same criteria.

Initially, 5346 publications were accessed in the database

search. From those and the publications accessed by gath-

ering first- and second-order references, 136 met our inclu-

sion criteria, and 42 provided statistical data sufficient for

quantitative comparison of results. Four of the 42 publica-

tions provided nonspatial results, with the remaining 38 pro-

viding results that included spatial parameters and variation.

However, the 38 remaining publications did not consistently

overlap in measured soil properties, sampling designs, crop

types, and agro-environmental contexts; therefore, a rigorous

meta-analysis was not possible. Instead, the 42 and 38 pub-

lications provided a foundation for understanding the possi-

ble structures of spatial variation and the numbers of samples

required to characterize soil chemical properties. The entire

set of 136 initially accessed publications was used to trace

historical trends in soil sampling, to understand the effects of

specific agronomic factors on spatial variation, and to iden-

tify optimal soil sampling methods as informed by modeling

studies.

3 TRENDS AND STATE OF
PEER-REVIEWED SPATIAL SOIL
SAMPLING LITERATURE

In this section, we provide a brief overview of historical trends

in spatial soil sampling to contextualize current practices and

to understand the origin of sampling recommendations com-

monly provided to farmers.

Spatial variability of soil nutrients has been an important

topic in soil science literature since the early 20th century.

Early studies explicitly recognized the lack of uniformity

across fields and conceptualized nutrient variability as result-

ing from laboratory error and field error (Robinson & Lloyd,

1915). As the corpus of soil sampling research expanded, the

field component of variability was further decomposed into

vertical, horizontal, and temporal variability (Cline, 1944),

which could all exist at multiple scales (Reed & Rigney,

1947).

Early soil sampling literature used classical statistical

concepts of randomization and stratification to account

for the spatial variability of soil properties, which are still

widely used today. These studies aimed to characterize inter-

and intra-class correlation for soil series and properties

(Heuvelink & Webster, 2001; Webster & Beckett, 1968)

and did not attempt to map or predict in units smaller than

singular strata, despite the recognition that average test values

used for fertilizer recommendations resulted in overapplica-

tion in some areas and underapplication in others (Peck &

Melsted, 1967). Most research provided recommendations

for the number of soil cores necessary to create a sufficiently

representative composite sample, with the typical goal to

estimate field-scale averages. Between 10 and 20 soil cores

were frequently recommended for all nutrients for a field size

of 4 to 8.1 ha (10–20 acres) (Hemingway, 1955; Tisdale and

Nelson, 1956), although this varied by nutrient with nitrate

requiring many more cores if higher precision was desired

(45 cores for an 80% confidence interval within 10% of the

mean on 75% of sampled areas) (Meisinger, 1984) and may

have been partially based on presumed economic feasibility

rather than statistical validity. When one set of soil cores

was used to characterize field-scale means of multiple soil

properties, the property requiring the greatest intensity of

sampling determined the required sampling intensity for all

properties (Reed & Rigney, 1947).

Before 1970, spatial designs for soil sampling followed

the classical concepts of simple random sampling (SRS),

stratified random sampling (Cochran, 1977), or system-

atic sampling (Madow & Madow, 1944). These sampling

methodologies can be briefly described as random selection

of sampling points throughout a field, division of a field into

relatively homogeneous areas before random selection, and

the use of a grid or pattern for choosing sampling locations.

Using these methodologies, cores were often analyzed
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individually to quantify variation for research purposes with

the knowledge that, in practice, all cores would be composited

before analysis.

The inability of compositing to provide any measure of

variability was noted as a serious limitation (Peck & Mel-

sted, 1967) even though the practice was widely used and

recommended. Other limitations in the application of classi-

cal methodologies were also recognized. Cline (1944) noted

that, “walking ‘at random’ over an area when selecting sam-

pling units is far from complete randomization and is subject

to strong personal bias” and warned about potential bias if

sampling grids were aligned parallel to systematic variation

in the soil such as crop rows.

Although motivation existed to overcome the limitations

of classical sampling and exploit variability to improve crop

productivity, the required statistical methodology had not yet

been developed. Early researchers were aware of the tendency

for neighboring observations of soil properties to be more

similar than observations separated by large distances (spa-

tial autocorrelation), but it remained a nuisance rather than an

object of study.

The use of geostatistics to describe spatial variation was

initiated in the 1960s with the publication of the Theory of

Regionalized Variables (TRV) (Matheron, 1963). The TRV

provided a statistical framework for quantitatively analyz-

ing localized continuous variation of biophysical properties.

Early applications were limited to mining geology; how-

ever, by the 1980s, the TRV had been extended to soil sam-

pling (Burgess & Webster, 1980). The foundation for TRV is

the concept of the variogram, which describes the variance

between all point pairs separated by a lag interval h. The semi-

variance γ(h) (Eq. (1)), representing the per-observation vari-

ance, is half the expected value of the value of the variance and

is more commonly used to describe the continuity between

observations z(i) across a two-dimensional plane. To estimate

γ(h) for integer values of h (assuming a constant mean within

the lag width around h), the semivariance is calculated as:

γ(ℎ) = 1
2
𝐸
{
[𝑧(𝑖) − 𝑧(𝑖 + ℎ)]2

}
(1)

To describe changes in the semivariance as h increases, the

semivariance for each lag interval (e.g., 0–10 m, 10–20 m,

etc.) is calculated and plotted against h to produce the semi-

variogram. At times, the correlogram is used instead of the

semivariogram and is related to the semivariogram:

ρ(ℎ) = 1 −
γ(ℎ)
σ2

(2)

where ρ(h) is the autocorrelation at lag h, and σ2 is the vari-

ance.

Plots of semivariance versus h are typically created using

field-collected data to create empirical semivariograms, to

which curves are fit and then used for field-scale spatial

interpolation. Both the semivariogram and correlogram

assume intrinsic stationarity: that the mean is constant and

the covariance between observations at different locations is

dependent only on their spatial separation, not their absolute

location. In addition, isotropy, a lack of directional trends

to the correlations, is often assumed to create these models

of spatial variation, although given enough data directional

(anisotropic) models may also be fit.

Refinement of the methods for estimating variograms

(Cressie, 1985; Yfantis, Flatman, & Behar, 1987) and for

predicting soil properties in unsampled locations via inverse

distance weighted interpolation and kriging (Burgess &

Webster, 1980; McBratney & Webster, 1981; Olea, 1984;

Warrick & Myers, 1987) occurred in the 1980s. Sampling on

a triangular grid was recognized to be the most efficient way

to collect spatial soil samples (McBratney & Webster, 1981;

Yfantis et al., 1987), but square grids were nearly as efficient,

much easier to design, and almost ubiquitous. Following

research by Lockman and Molloy (1984), the effect of tem-

poral fluctuations in nutrients on fertilizer recommendations

received empirical attention, culminating in the now-common

recommendation to perform sampling in the fall after harvest-

ing crops (excepting spring nitrate in semiarid locations and

the Pre-Sidedress Nitrogen Test in humid temperate regions).

Empirical research during the 1970s and 1980s focused on

describing soil properties in terms of single parameters (mean

and variation) (Cameron, Nyborg, Toogood, & Laverty, 1971;

Reuss, Soltanpour, & Ludwick, 1977) and mapping them as

continuous surfaces (Dahiya, Anlauf, Kersebaum, & Richter,

1985; Tabor, Warrick, Myers, & Pennington, 1985; van Meir-

venne & Hofman, 1989; Webster & McBratney, 1987). This

expansion of empirical work continued into the 1990s, with

the advent of mechanized Precision Agriculture/Site-Specific

Crop Management gaining traction in the middle of the

decade when Global Positioning System mapping equipment

became commercially available. Previously, variation in soil

properties could be spatially managed only on small scales,

but, with the prospect of using larger automated fertilization

equipment, spatial nutrient availability could be manipulated

at a fine scale over large landscapes. Nevertheless, although

research during this period explicitly recognized the possi-

bilities for site-specific fertilization, the focus remained on

refining grid sampling strategies and interpolation (Franzen

& Peck, 1995; Mallarino, 1996; Penney, Nolan, McKenzie,

Goddard, & Kryzanowski, 1996).

Once the means for describing and manipulating spa-

tial variation in soil properties were available, subsequent

research provided smaller iterations on the core geostatistical

concepts. However, a disconnect was apparent between

classical and geostatistical approaches: no clear methodology

existed for determining the advantages and disadvantages

of each or when each should be used. To fill this need, de

Gruijter and ter Braak (1990) and Brus and de Gruijter (1997)
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published two theoretical papers (see Wang et al. [2012]

for a review) that categorized spatial soil sampling into

“design-based” (classical) or “model-based” (geostatistical)

approaches. The next section discusses the steps required to

create a soil sampling plan and how these two approaches

can help guide their development. Concurrently, other soil

sampling research is reviewed that has implications for the

timing, layout, and density of soil sampling.

4 DEVELOPMENT OF A SOIL
SAMPLING PLAN

4.1 Goals

The core foundation of a soil sampling plan consists of clearly

defined goals for nutrient management. The most common

goals are to apply fertilizer and manure in a manner that

increases profits by reducing costs and increasing yields while

minimizing loss of nutrients to the environment. Depending

on a farmer’s ability to detect, interpret, and take advantage of

spatial differences in nutrient availability in a cost-effective

manner, the goal of increased profitability and reduced loss

of nutrients to the environment could involve whole-field or

site-specific management.

Another goal for nutrient management that is becoming

more common is to meet requirements for regulatory compli-

ance, most frequently with respect to P. As currently defined

by state regulatory agencies, only whole-field estimates of

nutrient concentrations are required for compliance, for exam-

ple as an input to the Phosphorus Index (Lemunyon & Gilbert,

1993; Sharpley et al., 2003). As explored below, although a

whole-field estimate is required in most cases, site-specific

estimates may be advantageous in some situations.

4.2 Defining the population

Regardless of the management goal, if the management scale

is the whole field, then the population to be estimated or

predicted is the entire field. If the management scale is site-

specific, then the population to be predicted is the entire set

of field management units (grid cells or zones). With this

defined, it is possible to determine the sampling population,

sampling units, sample size, methods, and locations of sam-

pling. Each of these parameters is inter-related, and decisions

about each parameter are affected by the choice of a design-

or model-based approach to spatial sampling. This choice is

described and formalized with a decision tree containing nine

criteria in Brus and de Gruijter (1997). We refer the reader

to the full outline of the decision tree in Brus and de Gruijter

(1997) and instead enumerate below the appropriate approach

for the common agronomic goals described above.

4.3 Choosing a sampling approach

4.3.1 Sampling for regulatory compliance:
Design-Based

For situations in which strict objectivity and lack of bias is

required for the sampling design (which excludes system-

atic sampling and subjective “representative” sampling), the

only appropriate approach is design-based sampling. This

approach uses the classical statistical concepts of randomiza-

tion and stratification (Carter and Gregorich, 2007), where

inference is entirely based on the sampling design and inde-

pendence induced by the random selection of sampling units

(and does not rely on spatial independence of the underly-

ing phenomenon). Design-based sampling allows bias to be

eliminated or accounted for when equal-probability sampling,

unequal-probability sampling, or design-based weights are

used (de Gruijter and ter Braak, 1990). Accounting for bias

is likely to be most important when sampling for regulatory

compliance.

4.3.2 Sampling for whole-field management:
Design- or model-based

Outside of a regulatory environment, the decision to use

design- or model-based sampling depends on several factors.

For the goal of whole-field estimation of spatial means and/or

variance, design-based sampling is indicated where the sam-

ple size is adequate and spatial autocorrelation is weak. If

spatial autocorrelation is strong, a model-based inference can

increase the efficiency of sampling. Unfortunately, the dis-

tinction between strong and weak is not well defined (Brus

& de Gruijter, 1997).

Unlike design-based sampling, the model-based approach

does not require spatial independence (random selection) of

sampling locations. Systematic or grid-based sampling is typ-

ically used for this approach, and independence is introduced

by assuming that the observations come from one realization

of the underlying random process (the superpopulation). The

model-based approach additionally assumes intrinsic station-

arity (Schabenberger & Gotway, 2005). In many situations, it

also assumes that the covariance is direction independent, or

isotropic.

4.3.3 Sampling for site-specific management:
Design- or model-based

For the goal of sub-field or site-specific estimation, one

must first determine whether management zones or grid-cells/

points are desired. If quantities in management zones are

to be estimated, then a design-based approach is indicated,
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which typically requires an adequate number of samples

within each zone. If all these conditions hold but it is

not possible to obtain enough samples, then a model-based

approach is indicated. If prediction is desired for grid cells or

points, then a model-based approach is indicated in nearly all

situations.

4.4 Sampling layout: sample location, size,
and layout

A design-based approach guides the practitioner to use ran-

domization, stratification, and probability-based sampling to

choose the sampling layout, whereas a model-based approach

suggests systematic sampling. Many references exist to guide

a design-based approach; SRS is a mature practice. Stratified

random sampling is simply an extension of SRS; yet, in prac-

tice the delineation of strata can be exceedingly difficult. For

both sampling methods, points must be randomly selected for

the whole field or within each stratum.

4.4.1 Design-Based approach

Defining strata
Choosing the optimal number of strata is a trade-off between

increased precision and increased cost and complexity (Lohr,

2010). This trade-off is difficult to navigate in agricultural

settings because it is not clear which spatial data should be

useful for stratification. Soil map units are the most intu-

itive data layer to use for stratification but may not provide

improved estimates over SRS for the whole field (Mueller,

Pierce, Schabenberger, & Warncke, 2001). Topography pro-

vides an appealing alternative to soil map units, yet sampling

within topographic zones can provide inconsistent results

across years and is only advised where manure has not been

applied, fertility is relatively low, and mobile nutrients are

of interest and when yield and remote sensing data are cor-

related to topography (Franzen, Cicacek, Hofman, & Swen-

son, 1998). Where multiple data layers are available, it may

be advantageous to use Latin Hypercube Sampling (Minasny

& McBratney, 2006) for stratifying the feature space. This

method algorithmically generates samples from the multivari-

ate distribution of available spatial data. In the context of

soil sampling, the distribution could be comprised of soils

data, remote sensing imagery, yield monitor measurements,

or other ancillary data that are difficult to visualize in multi-

dimensional space and challenging to efficiently stratify using

traditional methods.

For regulatory purposes, stratification may be advanta-

geous to account for areas of fields that may be at higher

risk of nutrient loss or areas that can receive applications of

a nutrient at a higher rate. In the case of P, critical source

areas may only occupy a small portion of the landscape while

generating a significant amount of the P runoff and leach-

ing. Areas where manure has been applied, that are high in

soil-test P above agronomic or environmental critical levels

(McCormick, Jordan, & Bailey, 2009), or that have high lev-

els of erosion (Sharpley et al., 2003), all of which may define

a critical source areas, may be inadequately sampled using the

SRS approach.

Management zones (MZs) are similar to strata and are fre-

quently used to define distinct areas for site-specific manage-

ment. Whereas the intention with defining strata is to approx-

imate the underlying soil property of interest, the intention

with MZs is to define locations where management interven-

tion can have a clear effect on crop responses (Taylor, McBrat-

ney, & Whelan, 2007). As a result, MZs may be spatially

similar to or divergent from classical strata and hence may

not be consistent with the requirements for strict objectiv-

ity. Many layers have been used for stratification, including

farmer observations (Taylor et al., 2007), electrical conduc-

tivity measurements (Peralta & Costa, 2013), previous years’

yields (Flowers, Weisz, & White, 2005), and remotely sensed

spectral measurements (Song et al., 2009). A full review of

MZ literature is out of the scope of this paper, yet we note

that the results for performance of MZs are mixed depend-

ing on the data layers used, agronomic history, and bio-

physical setting (Flowers et al., 2005; Mzuku et al., 2005;

Sawchik & Mallarino, 2007; Schepers et al., 2004; Vasu et al.,

2017).

Choosing the sample size
When a design-based approach is used to estimate whole-

field or within-stratum spatial means and variances, determin-

ing the appropriate sample size is important for achieving the

desired precision and accuracy. The required sample size for

an acceptable margin of error when no spatial autocorrelation

is present can be calculated as follows:

Sample size =
(
𝑡1−α∕2 × σ

ME

)2
(3)

where t1−α/2 is the t-statistic for a desired precision level α
and degrees of freedom equal to the input sample size minus

one, σ is the standard deviation, and ME is the margin of error

(Cochran, 1977). The inputs are derived from a pilot dataset or

data from an analogous location. This assumes that no finite

population correction is necessary because the population of

possible sample locations is nearly infinite and that the dis-

tribution of nutrient concentrations is approximately normal.

The margin of error is often calculated as a percentage of the

mean.

If moderate to strong spatial autocorrelation exists in the

field, which is often the case, the sample size can be reduced
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if the aim is to estimate the mean. In such cases, the sample

size is calculated as:

𝑛 = 𝑛classic

[
1 −

cov(𝑦𝑖∕𝑦𝑗)
σ2

]
(4)

where nclassic is the previously specified sample size,

cov(yi/yj) is the covariance between all possible pairs of

points, and σ2 is the dispersion variance of the population,

equal to E[y − E(y)]2 (Wang, Stein, Gao, & Ge, 2012), where

E[] represents the expected value of articles contained within

the brackets.

For most fields, local data to estimate the sample size will

not be available; therefore, data from other studies must be

used. Herein we synthesize articles collected during the litera-

ture review to estimate appropriate sample sizes and densities

for our soil chemical properties of interest. Individual obser-

vation data needed to account for spatial autocorrelation were

not provided with the selected research. Consequently, we

used the classical sample size estimator presented in Eq. (3).

The basic characteristics of each study are presented in Sup-

plementary Tables S1 and S2.

Only four of the catalogued studies used random sampling,

which is required in a design-based approach, as a means of

data collection. Our collective 60 years of experience with soil

sampling for nutrient recommendations leads us to the conclu-

sion that random sampling is used most frequently when soil

samples are collected for nutrient recommendations. Some of

the increase in the number of soil samples collected for nutri-

ent recommendations reported in 831,000 soil samples in the

2015 report “Soil Test Levels in North America” (IPNI, 2015)

was assumed to be the result of grid sampling or systematic

sampling to describe management zones, which may have had

the objective to describe soil spatial variability. However, the

large majority of the samples were thought to be collected for

whole-field nutrient analysis, which is typically done using

SRS (IPNI, 2015).

The data collected for this study, therefore, are mostly geo-

statistical in nature, with the objective to use applied model-

based inference, and therefore used versions of systematic

grid-based sampling. Despite the biased nature of systematic

sampling, we aggregated the data from individual fields in

each study to obtain an estimate for the range of soil sam-

pling densities that would be required to achieve a margin of

error of 10% of each study’s mean (Figure 1) at a 5% preci-

sion level. For NO3–N, P, K, SOC/SOM, and pH, the number

of qualifying studies was 16, 24, 19, 14, and 17, respectively,

which represented 35, 88, 75, 30, and 64 fields. Multiple fields

were allowed from each study, but repeated observations from

each field were not. In such cases, the first observation that

occurred in the fall was retained. In situations where data were

reported as lognormal, we calculated the number of samples

required to compute the geometric mean.

F I G U R E 1 Boxplot of estimated required sampling densities for

(a) phosphorus (n = 24 studies; 88 fields), (b) NO3–N (n = 16; 35

fields), (c) potassium (n = 19; 75 fields), (d) soil organic carbon

(SOC)/soil organic matter (SOM) (n = 14; 30 fields), and pH (n = 17;

64 fields); NO3–N had four outliers between 50 and 6361, P had nine

outliers between 50 and 8523, K had one outlier at 300, and SOC/SOM

had one outlier at 730

Nitrate–N and P require the highest median number of sam-

ples per hectare (15 and 8.4, respectively, excluding outliers),

and pH requires the least, with only 0.1. As the median sample

density increased, the width of the distribution increased as

well. Depending on the overall field size, these sampling den-

sities could be time and cost prohibitive to collect to achieve a

5% precision level: for small fields only 4 ha (10 acres) in size,

collecting 30 samples for P would be too expensive, and even

more so for a 40-ha (100-acre) field. Furthermore, the wide

distributions of required sample sizes suggest that, depending

on the nutrient of interest and an individual field, many more

samples would be required to achieve the desired level of sta-

tistical accuracy.

Fortunately, the required sampling density decreases with

increasing field sizes (Figure 2), enabling an exponential

decay function to be fit (SS sample size = α × e(−k×field size),

where α and k are shape parameters). For example, instead

of requiring 300 samples if a linear function was used for

a 40-ha field for P, a sample density of only 2.4 samples

ha−1 is required, equating to 96 samples total. To derive the

exponential decay functions, outlier sample size densities over

100 ha−1 (13 of the 292 data points) were omitted.

The ability to estimate sample size requirements based

on field size could be valuable because in many cases the

site-specific nutrient variability, which is a better indicator

of sampling requirements (Clay, Carlson, Brix-Davis, Ool-

man, & Berg, 1997), is unknown. However, the relationship

between required sampling densities and field size is heavily

affected by a small number of large-field observations and,
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F I G U R E 2 Effect of field size on required sampling density for (a) phosphorus (n = 24 studies; 88 fields), (b) NO3–N (n = 16; 35 fields), (c)

potassium (n = 19; 75 fields), (d) soil organic carbon (SOC)/soil organic matter (SOM) (n = 14; 30 fields), and pH (n = 17; 64 fields). Points

represent the required sampling density calculated from single fields in each study. Functions fit with field sampling densities >100 samples ha−1

were removed for clarity

in the case of NO3, a few observations of small fields that

displayed high variability. Therefore, although these limited

data suggest there may be a decline in sampling requirements

as field sizes increase, more data would assist in confirming

this hypothesis.

Compositing and log-normality
Compositing soil samples before analysis is a common

method for reducing soil analysis costs and is sensible when

sampling distributions are normal. However, for the 13 stud-

ies that explicitly tested for skewness and kurtosis, 10 found at

least one or more chemical properties that deviated from nor-

mality. Given this high percentage, compositing, which effec-

tively calculates the mean of a number of soil cores, is unlikely

to represent the true population parameter of interest and

will typically present a higher estimate of nutrient concentra-

tions than is accurate.

In locations where “hot spots” of nutrients are encountered,

the distribution of a nutrient would be positively skewed,

which would lead the farmer to infer that the test value of the

composited soil property is high. For fertilizer management,

this may cause the farmer to apply an inadequate amount of

fertilizer for optimum crop growth. In a regulatory context, the

farmer may be penalized for excess nutrient concentrations.

To avoid this outcome, it is important to have prior evi-

dence that a nutrient will be normally distributed in a field

before assuming that compositing will adequately represent

the average nutrient concentration. Where log-normality is

present, farmers may implement some type of systematic grid-

based sampling with variable-rate fertilization to avoid over-

application in hot spots and under-application in areas with

lower nutrient concentrations. If variable-rate fertilization is

not possible, then a simple outlier-resistant measure of central

tendency, such as the median (or, equivalently, the geometric

mean), may be used to choose the uniform fertilizer rate.

4.4.2 Model-Based approach

Defining grids
The configuration and density required for systematic grid

sampling is dependent on the strength and structure of spatial

variation, which in turn are described by the semivariogram

or correlogram. We refer the reader to key geostatistical



LAWRENCE ET AL. 501

references for detailed descriptions of the semivariogram and

its use in interpolation (Burgess & Webster, 1980; Cressie,

1993; Hengl, Rossiter, & Stein, 2003; Kerry, Oliver, &

Frogbrook, 2010; Matheron, 1963; Oliver & Webster, 2014;

Schabenberger & Gotway, 2005) and instead describe the

methods used for acquiring grid data, the resulting spatial

structures, and the implications for future sampling.

The grid sizes used to assess spatial variability of soil

chemical properties varied from 1 to 100 m in the 39 assessed

studies that collected grid-based data. Most samples were col-

lected at the centroids or corners of the grids, although sev-

eral studies collected samples spread throughout grid cells,

referred to as the “grid-cell” method. Grid-cell sampling has

mixed results because it is sometimes more efficient for esti-

mating nutrient concentrations (Chang, Clay, Carlson, Clay, &

Malo, 2003; Mallarino & Wittry, 2004), but in other instances

it is no more effective than a whole-field approach (Mueller

et al., 2001).

To effectively use a model-based approach that relies on

grid sampling, the strength of spatial autocorrelation must be

moderate to strong (Kravchenko, 2003). Cambardella et al.

(1994) proposed assessing the degree of spatial dependence

using the ratio of the semivariogram nugget to the sill, a

metric that was used in a later study by Cambardella and

Karlen (1999) and subsequently adopted by other researchers

(Kravchenko, 2003; Mueller, Pusuluri, Mathias, Cornelius,

& Barnhisel, 2004). This metric may be calculated using

pilot data, extrapolated from other studies, or estimated using

ancillary data (Kerry & Oliver, 2008). Ratios <0.25 suggest

strong spatial dependence, 0.25 to 0.75 suggest moderate spa-

tial dependence, and >0.75 suggest weak spatial dependence.

Figure 3 displays the spatial dependence of NO3–N, P, K,

SOC/SOM, and pH for the assessed studies.

The strength of spatial dependence is extremely inconsis-

tent between studies; however, P, pH, and SOC/SOM seem

to be more strongly spatially dependent than NO3–N and K.

Given its lower degree of spatial dependence and high mobil-

ity in the soil, grid-based sampling of NO3–N is unlikely to

be advantageous for whole-field or site-specific management.

Plant mineralizable N, NH4–N, Zn, total N, Mg, Al, S, and

Ca had average spatial dependencies of 0.85, 0.55, 0.5, 0.14,

0.13, 0.13, 0.12, and 0.08, respectively, but had wide ranges

and low accuracy because only one to nine individual values

were recorded for each property.

In contrast to NO3–N, P has much lower mobility in

fertility-limited soils and a high degree of spatial dependence;

hence, P is likely to be a better candidate for grid-based

sampling. Several factors may amplify the spatial variabil-

ity of P. Hot spots from manure application or old home-

steads can either increase (Cambardella & Karlen, 1999) or

decrease (Grandt, Ketterings, Lembo, & Vermeylen, 2010)

spatial variability. Surficial or deep-banding of P fertilizer can

increase lateral (Kitchen, Westfall, & Havlin, 1990) and ver-

F I G U R E 3 Strength of spatial dependence of nutrients for all

studies for (a) phosphorus (n = 13 studies; 22 fields), (b) NO3–N

(n = 9; 15 fields), (c) potassium (n = 9; 15 fields), (d) soil organic

carbon (SOC)/soil organic matter (SOM) (n = 9; 12 fields), and pH

(n = 10; 16 fields); <0.25 = strong spatial dependence, 0.25 to

0.75 = moderate spatial dependence, >0.75 = weak spatial dependence

tical stratification (Rehm, Scobbie, Randall, & Vetsch, 1995)

of P and K, although the patterns of stratification depend on

the tillage system used. In no-till systems, banded applica-

tions may result in cyclical patterns perpendicular to rows

(Mallarino, 1996). To guard against varying degrees of lateral

and vertical P concentration when grid sampling in banded

fields, within-band samples should be collected in propor-

tion to the area of the fields the bands occupy (Kitchen et al.,

1990) to a depth of 15 to 20 cm (Mallarino & Borges, 2006),

or unaligned systematic grids should be used (Wollenhaupt,

Wolkowski, & Clayton, 1994). If the location of the band is

not known, samples can be collected in pairs separated by a

distance of half the band width (Kitchen et al., 1990).

For other chemical properties, there is little information

on the effect of various agronomic practices on the strength

of spatial dependence. Tillage may increase the distance

over which soil chemical properties are correlated (Robert-

son, Crum, & Ellis, 1993) as compared with uncultivated

grassland sites, but it may be difficult to make further gen-

eralizations about spatial structure in some fields because

periodic trends and nested scales of variation may obscure

true spatial patterns (Cahn et al., 1994; Mallarino & Borges,

2006).

Across all studies, NO3–N generally had the smallest

median range of spatial correlation, whereas P had the

largest median range of spatial correlation (Figure 4). When

collecting grid samples for multiple chemical properties,

the property with the smallest range will likely strongly

influence the required grid size, although co-kriging can be
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F I G U R E 4 Range of spatial correlation for (a) phosphorus

(n = 11 studies; 17 fields), (b) NO3–N (n = 8; 13 fields), (c) potassium

(n = 7; 11 fields), (d) soil organic carbon (SOC)/soil organic matter

(SOM) (n = 3; 6 fields), and pH (n = 6; 11 fields). Studies that did not

exhibit a sill were excluded from this graph. One study-field each for K

and SOC/SOM displayed only a nugget effect (no spatial

autocorrelation) and were also excluded

used to augment data for soil properties only available at

lower resolutions (McBratney & Webster, 1983).

To decide on the final grid size to use for sampling, the

range of spatial correlation can help guide the sampling den-

sity, but the sampling design ultimately depends on the pre-

defined objectives. Three objectives are typically specified

as (i) minimizing the estimation error variance from kriging,

(ii) achieving equal spatial coverage, or (iii) achieving equal

coverage in feature space (Wang et al., 2012), where the fea-

ture space is defined as the joint multivariate distribution of

spatial variables from a field. The first objective requires an

assumed variogram to optimize spatial allocation of sampling

points.

McBratney, Pringle, and McBratney (1999) developed a

decision tree for collecting pilot samples to optimize spatial

allocation of sampling points and a proposal for averaging

variograms from other locations for use in the target location.

Once a variogram has been obtained or assumed, grid points

may be placed and then algorithmically shifted to minimize

the objective function using simulated spatial annealing (van

Groenigen, 2000; van Groenigen, Siderius, & Stein, 1999;

Vašát, Heuvelink, & Borůvka, 2010). Alternatively, because it

is most important to have high number of point pairs at small

lags and to achieve other distance-angle dispersion criteria,

algorithmic options are available for choosing sampling loca-

tions (Warrick & Myers, 1987).

If equal spatial coverage is desired and a variogram is not

available, it is possible to optimize sampling locations with

the goal of minimizing the distance from unsampled points

to sampled points (van Groenigen et al., 1999; Wang et al.,

2012). For achieving equal coverage in feature space, latin

hypercube sampling is another option (described in Design-

Based Approach: Defining Strata) (Minasny & McBratney,

2006).

Another consideration in determining the grid size when

nutrient recommendations are desired is the economic opti-

mum sample density (EOSD). In agricultural settings, the

EOSD is dependent on the net economic outcome of increas-

ing or decreasing sample numbers. The agronomic factors

that influence the EOSD are the accuracy and precision of

the economically optimum nutrient rate (Cerrato & Blackmer,

1990; Morris et al., 2018), which includes (i) the applicability

of the economically optimum nutrient rate to the field loca-

tion of interest, (ii) the rate at which uncertainty is reduced

as more samples are collected, (iii) prior information about

nutrient concentrations available from the location of inter-

est that can inform sampling decisions, and (iv) other genetic,

environment, and management factors (Hatfield & Walthall,

2015) that affect yield responses to N. Economic factors that

influence the EOSD include the relative change in net rev-

enue from additional N availability from manure or fertilizer,

the fixed and variable costs of sampling, crop and nutrient

prices, and the cost of variable rate fertilizer application if it

is used to manage spatial variability. When all of these fac-

tors are considered, which would require considerable time

and expense, the EOSD can be calculated as the value where

the marginal costs of increased sampling equal the marginal

benefits from the increased sampling. Increasing the sampling

density beyond the EOSD will not reduce uncertainty enough

to justify the increased spending on labor, equipment, and lab-

oratory analysis fees. No literature was found that derived the

EOSD in agricultural settings, but the EOSD is an important

metric that merits attention in future research.

Once the grid size and configuration has been determined,

it is important to check additional assumptions before pro-

ceeding with sampling or analysis. If anisotropy is expected,

grid sampling should be modified, for example, by adjust-

ing the sampling length along or across rows by the corre-

lation length multiplied by the ratio of directional variabil-

ity (i.e., Cvx/Cvy) (Gupta, Mostaghimi, McClellan, Alley, &

Brann, 1997). Once data have been collected, it is critical to

check the stationarity (i.e., constant spatial mean) and isotropy

assumptions of model-based inference. In the studies assessed

here, only 16% checked for stationarity and 13% checked

for anisotropy. Correcting for nonstationarity is possible via

median-polish kriging (Cressie, 1993; Mohanty & Kanwar,

1994) or by estimating the trend and variogram of random

residuals simultaneously (Lark, 2012; Lark, Cullis, & Wel-

ham, 2006; Webster & Oliver, 2007), and directional semi-

variograms may be used to account for anisotropy (Mueller

et al., 2001).
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4.5 Limitations of cross agro-environmental
comparisons for design- and model-based
inference

A high degree of variability was observed in the ranges of

spatial correlation, strengths of spatial dependence, valida-

tion of assumptions, and required design-based sample sizes

across all studies. Considering the vast array of potential envi-

ronmental, agronomic, sampling, and statistical confounding

variables for each study, this uncertainty is not surprising and

should give practitioners pause before extrapolating findings

to new locations.

Research on spatial variability, especially at the field scale,

cannot isolate confounding factors, as is possible in small-plot

experiments. In fact, isolation would undermine the purpose

of applied spatial studies because it would largely eliminate

possibilities for spatial extrapolation. The alternative, how-

ever, is that many spatial soil sampling studies discover spatial

patterns that are at best only applicable in a hyper-localized

area, as discovered by Lauzon et al. (2005) across 23 farm

fields.

Several developments would greatly aid the ability to

extrapolate from single studies or to merge results from mul-

tiple studies, as suggested by the average variogram approach

(McBratney et al., 1999). First, comprehensive background

data collection on soil properties, cropping history, fertiliza-

tion history, and climate and an exhaustive list of soil sam-

pling protocols would help practitioners select research that

was sufficiently similar to their own context. Second, a sys-

tematic research effort needs to be aimed at identifying the

effect of various confounding variables on the spatial structure

of soil chemical properties, isolating them one or several at a

time. Only then can practitioners know whether those vari-

ables can be safely ignored when applying variograms from

disparate environments. Third, for specific combinations of

geographic confounding variables (e.g., soils and climate),

systematic attempts to enumerate and sample spatial variabil-

ity of nutrients would help identify the uncertainty of vari-

ogram parameters. Finally, if researchers were to propose a

discrete scope of inference for each study, it would greatly aid

practitioners in knowing whether the required sample sizes

and/or variogram properties could be extrapolated to their

own agro-environmental context.

5 CURRENT STATE OF
EXTENSION SOIL SAMPLING
RECOMMENDATIONS

Extension recommendations necessarily must provide a more

concrete answer to practitioners on how to collect soil

samples in the presence of spatial variability compared with

peer-reviewed academic literature.

The literature search on peer-reviewed, extension-oriented

literature uncovered only five articles about spatial configura-

tion of soil sampling. Due to this small volume of literature,

it was not possible to infer whether public-oriented extension

literature was consistent with the academic understanding of

extension practitioners.

Production agriculture–focused soil sampling recommen-

dations were found from only 39 of the land grant univer-

sity extension systems in the 50 US states. The vast major-

ity (87%) of those provided suggestions for forming MZs,

and none mentioned stratification for design-based sampling

(Supplemental Table S3). Of those suggesting the use of MZs,

the recommended sampling densities ranged from 0.6 to 5

samples per hectare (0.25–2 samples per acre) (Supplemental

Table S3), which is substantially below the median required

number of samples for NO3–N and P and above the median

number for other soil properties at a precision level of 5%

(Figure 1). For lower levels of precision, the recommended

sampling densities may be more consistent with the peer-

reviewed literature. The associated maximum recommended

MZ size ranged from 2 to 16 ha (5–40 acres), and none rec-

ommended reducing sampling intensities for larger areas. To

delineate MZs, a wide variety of data layers were suggested,

including soil type, cropping history, erosion, slope, aspect,

soil texture, soil depth, remote sensing, crop productivity, and

past management. In the simplest case, one or two data layers

may be aggregated and delineated by hand, but a quantitative

approach and the incorporation of more data layers requires a

Geographic Information System to manage, integrate, display,

and derive benefit from the data.

To collect the samples within MZs or whole fields, 54%

of extension sources suggested “zig-zag,” “Z,” or “W” sam-

pling, with 44% mentioning the need to take “representative”

samples (Supplemental Table S3). This suggestion is at odds

with the requirements of a design-based approach in which

random selection of locations is paramount. As a result, it is

highly likely that these methods often result in biased results,

especially if the samples are composited before analysis and

the soil property is lognormally distributed.

For the purposes of site-specific agricultural management,

16 (40%) extension sources recommended the option of grid

sampling. Of those, nine recommended point sampling, three

recommended grid-cell sampling, and three recommended

point or grid-cell sampling. Only five sources mentioned

detailed suggestions to account for fertilizer banding; several

more mentioned avoiding bands altogether when sampling.

For no-till, many recommended taking samples closer to the

surface (0–5 cm or 0–2 in.) in addition to a full-depth sample

(typically 0–15 cm or 0–6 in.) to account for a lack of deep

incorporation (Supplemental Table S3).
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6 RECOMMENDATIONS

Collecting a large number of soil cores is expensive and time

consuming. Therefore, it is important to select a sampling

strategy that is efficient and consistent with the goals of the

practitioner or researcher. To aid in these decisions, we dis-

tilled current and historical research into a single decision

tree (Figure 5) with nine possible decision points, described

below.

1. Sampling for regulatory compliance?

If the intent of sampling is to comply with regulations, strict

objectivity is required (see section Sampling for Regulatory

Compliance: Design-based). This requirement can be fulfilled

with a SRS design or stratified random sampling design.

2. Whole or sub-field management?

If one suspects that there is substantial sub-field variabil-

ity that can be manipulated and that would be profitable to

manage site-specifically, then sub-field management should

be considered.

3i. Strong spatial autocorrelation?

The strength of spatial autocorrelation is defined as the

ratio of the nugget to the sill of the semivariogram (see sec-

tion Model-Based Approach: Defining Grids), which is often

defined as >0.75 when strong (Cambardella et al., 1994),

although “strong” spatial autocorrelation is not well defined

and varies from paper to paper. This information should be

derived from previous studies at the same location or high-

quality spatial data collected from an analogous agronomic

system. If the spatial autocorrelation is not known, then the

assumption should be that there is no strong spatial autocor-

relation.

3ii. Management scale: points/cells or management

zones/strata?

If the goal is to manage on a sub-field scale and at a high

spatial resolution, then this is affirmative. If the intention is to

manage at an aggregated resolution (i.e., management zones),

then the answer is no.

3iii. Suspected groupings of field areas with respect to soil

property of interest?

Based on visual observations, soil maps, yield monitor

data, or other ancillary spatial data sources, one may sus-

pect that the soil property of interest is defined by homoge-

neous areas with discontinuous boundaries. If so, stratifica-

tion should be considered.

4i. Are prior spatial data available?

Previously collected spatial data that are of high quality and

from an analogous agronomic system (cropping history, soils,

climate, fertilization history, etc.) can provide valuable infor-

mation on the density and configuration required for model-

based sampling.

4ii. Are spatial data layers available that are correlated with

groupings?

Related to Decision Point 3iii, observations or spatial data

layers must be available that are correlated with the soil prop-

erty of interest to create strata. For example, if P is a yield-

limiting factor, then spatial yield data may be used to derive

strata for P. Similarly, if significant runoff has transported

applied fertilizer to toe-slopes, then topographic data may

be associated with available P and can therefore be used for

stratification.

5. Is the goal to create baseline spatial data?

Without the availability of previously collected spatial data,

it is important to explicitly recognize whether the sampling

activity is intended to form a baseline dataset for future work.

When creating a baseline, it is important to anticipate that the

soil property may vary on a scale much smaller than the cho-

sen sampling resolution, reducing the practical utility of the

survey.

6. Costs of grid sampling are affordable?

Based on previously collected spatial data and/or a default

resolution for baseline data collection of at least 100 data

points for any field size (Webster & Oliver, 1992), it is

straightforward to estimate the required sampling density and

costs. If these are not manageable, then design-based sam-

pling should be used.

6.1 Suggestions for research applications

If these conditions are fulfilled and the sampling is performed

for research purposes, we suggest the investigators catalog and

publish the following minimum data:

1. Soil physical properties: soil order, top horizon depth,

organic matter, texture, pH, anomalous soil properties

(e.g., highly calcareous).

2. Agronomic history: 10-yr cropping and tillage history, 5-yr

fertilization/manure history, significant presence of weeds

with an estimated percentage infestation if possible, use of

irrigation, presence of tiling, any other anomalous histori-

cal artifacts (e.g., fertilizer spills, stacking of manure).

3. Climate: average precipitation and temperature, growing-

season precipitation.

4. Soil sampling: depth of sampling, probe diameter, number

of fields, field size, size of sampling area, configuration of

sampling, compositing parameters (number of cores, area

sampled, configuration), month of sampling and relation to
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F I G U R E 5 Decision tree to guide soil sampling for researchers and practitioners in selecting a sampling strategy
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field operations (e.g., pre-fertilization, post-harvest), grid

spacing, total number of sampled points.

5. Statistical properties: ideally the raw data would be avail-

able online because the costs of data storage are negli-

gible. If this is not possible, researchers should provide

the means, standard deviations or variance, sample size,

and coefficient of variation. For spatial studies, this would

also include semivariogram parameters (model form,

nugget, sill, and range) and confirmation that assump-

tions about log-normality, stationarity, and isotropy were

validated.

6. Scope of inference: For the use of other researchers or

practitioners, to what set of conditions could this research

be reasonably extended?

6.2 General suggestions for design-based
sampling

1. If no prior information on the soil property is available,

log-normality should be assumed, and soil samples should

not be composited. If the collected cores display log-

normality, the geometric mean or median should be used

instead of the arithmetic mean. Only in instances in which

normality has previously been established should soil sam-

ples be composited.

2. Reduce the number of cores collected per unit area as the

field size increases. The number of cores will always need

to be balanced with cost constraints.

7 CONCLUSION

The inherent spatial variability of soil chemical properties

at multiple scales is challenging to characterize, even when

significant resources are available for sampling and analysis.

Statistical methods to estimate and predict those properties

have become increasingly sophisticated, yet unclear sampling

goals, conflicting information, and lack of structured data pre-

sentation have hampered the development of a comprehensive

knowledge base on soil variability in agricultural landscapes.

To make progress in soil sampling, it is important to describe

site properties in detail, explore the effect of confounding vari-

ables, quantify spatial uncertainties, and define the scope of

interest for each individual study.

Given the slow pace of advancements in knowledge

about spatial variability of soil nutrients from soil sampling

research, it is not surprising that extension recommendations

often suggest practices such as compositing and Z-sampling,

which do not have a strong foundation in peer-reviewed lit-

erature. Fortunately, there are theoretically simple ways to

correct these recommendations, such as suggesting soil cores

to be individually analyzed. However, the results from this

review indicate that from a practical standpoint most fields

likely will be too expensive to sample if collection of individ-

ual cores is required to obtain a value reasonably close to the

mean at a 5% precision level; a 10 or 20% precision level may

be more affordable. Using software for randomly allocating

points within fields, strata, or MZs also would greatly increase

the accuracy of design-based sampling. Creating more confi-

dent recommendations on the data layers to use for MZs is

more problematic, and the current ad hoc approach would

benefit from more structure such as might be provided with

decision trees.

Until the research community develops a more structured

approach toward applying model-based sampling in previ-

ously unsampled locations, it is difficult to know whether spe-

cific sampling densities or configurations would result in posi-

tive net economic returns for a farmer. Design-based sampling

methods, with smaller required sample sizes and the ability to

minimize bias, currently outweigh the promise of site-specific

management in most fields unless the costs for sampling are

greatly decreased and benefits to precision applications of

nutrients are greatly increased. The results reported in this

study indicate that design-based sampling is more likely than

model-based sampling to provide benefits for farmers and

society through more profitable applications of fertilizer and

manure, more efficient use of nonrenewable natural resources,

and minimization of pollution.
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