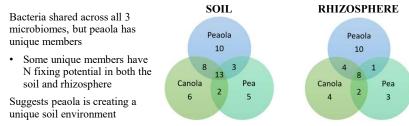
The role of microorganisms in nutrient provisioning in Peaola

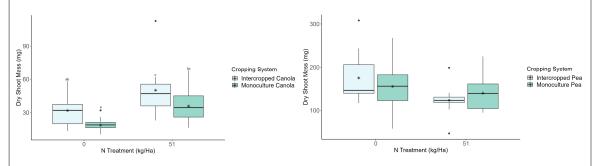
Janice Parks^{1,3}, Danika Dalvia⁴, and Maren Friesen^{1,2}


(¹Department of Plant Pathology; ²Department of Crop and Soil Science; ³Molecular Plant Sciences Ph.D. Program; School of Molecular Biosciences⁴)

PLANT-PLANT INTERACTIONS AND THE MICROBIOME

Runoff from N fertilizers have harmful environmental impacts1

- Groundwater pollution
- Acidification and eutrophication of aquatic ecosystems


Pea-canola intercropping (peaola) causes a 65% increase in land productivity without N fertilizer inputs²

Do pea associated microorganisms provide N to canola?

• Pea associated rhizobia and AMF are providing N to canola through the release of symbiotically fixed N and the mineralization of N from degrading organic matter

INITIAL GREENHOUSE EXPERIMENT SUGGEST NUTRIENT PROVISIONING

Significant differences (P < 0.05) are designated by different letters

- N treatment (ANOVA, P = 0.000253) and pea (ANOVA, P = 0.00644) found to significantly impact canola growth independently of each other (ANOVA, P = 0.533)
- Intercropped canola with no fertilizer treatment not being significantly different from monoculture canola with fertilizer treatment is suggestive of N being provided to canola in the intercrop
- Pea was unaffected by the intercrop and N

MICROORGANISMS, N APPLICATION, AND CROPPING SYSTEM HAVE SIGNIFICANT IMPACTS ON PLANT GROWTH ANOVA, p = 4.37e- 4 С ANOVA, p = 1.53e- 3 А Ν Soil Treatment 🔶 No Soil 0 Live Soil Shoot The cropping system, N application, rhizobia L treatment, and the soil microbiome were Α manipulated in this greenhouse experiment · Intercropping was detrimental to canola growth Intercropped Canola Monoculture Cano Cropping System N Treatment (kg/Ha Rhizobia Treatment but beneficial to pea · Rhizobia improved the growth of both canola and pea ANOVA p = 2.16e-11 500 ANOVA p = 2.35e-ANOVA p = 2.24e-· N treatment was beneficial to canola growth with the magnitude dependent on soil treatment <u>6</u>40 · N treatment was detrimental to pea growth Р Е Soil treatment had no significant impact on pea **5** 300 5 30I А growth 201 Cropping System Rhizobi N Treatment (kg/Ha)

CONCLUSIONS AND NEXT STEPS

Intercropping, rhizobia, and N application have a significant impact on plant growth. However, the impacts of intercropping on plant growth are currently inconclusive from the two experiments. Further greenhouse experiments should be performed to draw conclusions.

CONTACT INFORMATION Janice Parks: Maren Friesen:

Email: janice.parks@wsu.edu Email: m.friesen@wsu.edu

REFERENCES

- ¹Erisman J., Galloway J., Seitzinger S., Bleeker A., Dise N., Petrescu R., Leach A., de Vries W. Consequences of human modification of the global mitrogen cycle. *Philosophical Transaction* of the Royal Society B: Biological Sciences. 2013;368(1621):20130116. doi: 10.1088/rstb.2013.0116
- Madsen I., Ford J. Peaola yield and land equivalent ratio experiments. 2021 Dryland Field Day Abstracts. 2021;66-67