Mask R-CNN Based King Flowers Identification for Precision Apple Pollination

Xinyang Mu and Long He

The Pennsylvania State University

2022 Mid-Atlantic Fruit and Vegetable Convention

2/2/2022

Introduction

Importance of Apple Production

Economic impact

□ Ensure Product's Quantity and Quality

Optimal pollination

Introduction

Product Quantity and Quality

Precision pollination during flowering stage

Challenges in Achieving Optimal Pollination

- Insect pollinators dying off rapidly
- Environmental conditions huge uncertainty

Autonomous Robotic Pollination System

Study Objectives

Establish a flower cluster image dataset throughout the flowering growing stage.

Develop a machine vision system to identify the king flowers on apple canopies.

Compare the results of vision system with manually-counted ground truth.

Artificial Intelligence based Vision System

Image Acquisition System

- ZED 2 camera
- Kubota utility vehicle
- Aluminum supporting frame
- Cultivars: Gala / Honeycrisp
- 800 images were collected

Mask R-CNN based Instance Segmentation

Mask R-CNN Network Flowchart

Output Images with Masks

Image Segmentation Results

□ Flower Segmentation Result

Image Segmentation Results

□ Flower Segmentation Evaluation

Evaluation parameter	Exposed Flowers	Occluded Flowers	Overall	2.25 - 2.00 - 1.75 -					—— Tra Val	ining idatio
Precision (%)	78.73	68.39	73.56	1.50 - So 1.25 -	14-1-1	L.				
Recall (%)	70.31	58.83	64.57	1.00 - 0.75 - 0.50 -		and the	Crota			
F1 Score	74.28	63.25	68.77	0.25 -	0	20	40	60	80	1
				-			Epo	ches		

100

King Flower Detection

□ King Flowers Detection

King Flower Detection

□ King Flowers Detection Accuracy for Gala Apple Trees

Date	Counted flowering stages (ground truth)	Detected flower stages (algorithm)	Accuracy of king flower detection (%)
4/15/2021	5%	4.6%	92%
4/16/2021	10%	8.5%	85%
4/17/2021	20%	16.6%	83%
4/18/2021	30%	23.7%	79%
4/19/2021	40%	29.6%	74%
4/20/2021	75%	46.5%	62%
4/21/2021	100%	60%	60%

King Flower Detection

□ King Flowers Detection Accuracy for Honeycrisp Apple Trees

Date	Counted flowering stages (ground truth)	Detected flower stages (algorithm)	Accuracy of king flower detection (%)
4/15/2021	0%	0%	100%
4/16/2021	3%	2.7%	90%
4/17/2021	13%	11.4%	88%
4/18/2021	20%	16.8%	84%
4/19/2021	50%	39.5%	79%
4/20/2021	75%	56.3%	75%
4/21/2021	100%	69%	69%

Conclusion

A novel approach for apple king flowers detection was developed using Mask R-CNN based instance segmentation.

□ The detection target focused directly on the king flowers, which are the most critical blossoms to perform precision pollination.

The detection accuracy was ranged from 91% to 60% with the development of flowering stages.

Thank you!

USDA AMS-Specialty Crops Program No. K3055 State Horticultural Association of Pennsylvania (SHAP) Northeast Sustainable Agriculture Research and Education (SARE) Graduate Student Grant GNE22-293 Special thanks to Dr. James Schupp for ground truth information.

