The Use of Virtual Fence Technology as a Management Tool for Beef Cattle

Juliana Ranches, Ph.D.

Assistant Professor \& Extension Beef Specialist
Oregon State University, Eastern Oregon Agricultural Research Center (EOARC) Burns, Oregon

2022 Montana Nutrition Conference and Livestock Forum

Research Group

OregonState University

Oregon State University Scientists:

David Bohnert Juliana Ranches Dustin Johnson

USDA-ARS Scientists:

Chad Boyd
Kirk Davies
Rory O'Connor

Presentation Overview

1. Introduction

2. Virtual Fence (VF) Research Highlights:

Effects of virtual fence monitored by global positioning system on beef cattle behavior (Ranches et al., 2021)
Virtual Fencing Effectively Excludes Cattle from Burned Sagebrush Steppe (Boyd et al., 2022)
Using Virtual Fencing to Create Fuel Breaks in the Sagebrush Steppe (Boyd et al., 2022)
3. Ongoing VF Studies:

Fine Fuels management
Riparian study

Introduction

O In modern agricultural systems, multiple types of fences are used to contain and manage livestock.

O Conventional fences are static tools that are very effective in controlling animal ingress or egress but fail to offer managers the flexibility they need to optimize the physiological requirement of the vegetation with the nutritional needs of foraging animals (Anderson, 2007)

O Traditional fencing is often delayed by procedural and logistical barriers (e.g., NEPA, archeological clearances, contracting, labor availability, etc.)

Introduction

O The most common types of fences are barbed wire \& electric, which are often time-consuming to build and maintain, and are costly (Bishop-Hurley et al., 2007).

O Expenses related to traditional fence are increasing (supplies and labor)

Recent 2022 bids for new fence in rangeland and forest environments in Oregon: $\$ 13,000$ to $\$ 40,000$ per mile

Cross-fencing to subdivide pastures in Montana:
10,240 acres into 16 even-sized 640 -acre pastures =
the initial installation and labor cost of four-strand barbed wire is $\mathbf{\$ 8 , 2 9 0 / m i l e *}$ (Knight et al., 2011)
*not considering incentives/support

Introduction

O Recent technology using behavioral modification based on GPS-activated collars
O Virtual fence: is a structure serving as an enclosure, a barrier, or a boundary without a physical barrier

Virtual fencing (VF)

Less expensiveLess logistically challengingLess labor intensiveManagement to the animal level

Introduction

"Fenceless" Fencing is not a new concept, but technological progress has improved the feasibility

Proximity Sensing
(ground-based transmitters)

GPS Location

Introduction

VENCE

O Virtual fence: is a structure serving as an enclosure, a barrier, or a boundary without a physical barrier.

Satellite/GPS

GPS/Stimulus Collar on Cattle

Communication Gateway
User Computer/Smart Phone

Introduction

o Designated boundaries in a given area
o GPS collars give auditory and sensory cues to the cattle if cattle trespass the determined boundary.
o Conditioning association to the auditory cue.

- Management to the individual level.

Introduction

Virtual Fence Uses:

O Protect grazing restriction areas - Post fire
O Protect sensitive areas - Riparian areas

- Cattle location and monitoring

O Pasture subdivision, land utilization
O Avoid toxic plants consumption

- Targeted grazing
- Virtual Fence Projects at EOARC:

1. Behavior study

2. Burned area study
3. Fire break study

We hypothesized that the use of VF collars would be an effective method to contain cattle in a specific area or/and prevent cattle from entering a designated area. Furthermore, we hypothesized that the use of VF collars would not negatively impact cattle behavior.

Thus, the objective of this study was to evaluate the efficacy of VF as well as the behavior of naïve cows when fitted with VF collars for the first time.

Material and Methods

1. Animal Selection and Handling:

- Cows ($n=11$) selected for this study were never fitted with VF collars and therefore were considered naïve to the technology.
- For behavioral evaluation, each cow was fitted with a unique VF collar (Vence Corp. Inc. San Diego, CA) for the duration of the study.
- At the end of data collection at the testing arena, cows were collared for 8 days and maintained in a VF area as a group for collection of auditory and electric cues

Material and Methods

2. Virtual Fence and Testing Arena:

- The testing arena was created using Herd Manager (Vence Corp. Inc. San Diego, CA) according to GPS coordinates.
- The VF contained two management zones, one where the auditory stimulus (AS) was applied and another one where the electric stimulus (ES) was applied.

Material and Methods

3. Data Collection:

- Data were collected individually for each cow over 5 runs of 10 minutes each.
- A bale of alfalfa (Medicago sativa) hay was placed approximately in the middle of the VF management zone, to serve as a feed attractant.

Material and Methods

3. Data Collection:

- Chute score:

$1=$ calm, no movement to $2=$ restless shifting; $3=$ constant shifting with occasional shaking of the chute; $4=$ continuous movement and shaking of the chute; and $5=$ violent and continuous struggling.

- Chute exit velocity (m / s)
- Collar fit score: upon 30 s of observation;

1 = unalarmed and unexcited, walking slowly; 2 = slightly alarmed and excited, moving moderately quickly; 3 = moderately alarmed and excited, moving quickly; $4=$ very alarmed and excited, moving quickly and shaking head; and $5=$ extremely alarmed and excited, moving quickly, shaking the head, and jumping

Material and Methods

3. Data Collection:

- Latency to approach feed attractant: recorded for all cows in all runs by one individual using a stopwatch (Versa, Fitbit; San Francisco, CA).

Material and Methods

3. Data Collection:

- Cow location and behaviors: collected using focal point observations every one minute.
- Auditory and electric stimuli data: were collected from VF collars. The VF collar logged the date, time, GPS location, and any cues applied.

Category	Behavior	Behavior Description
Feeding	Eating	Cow eats attractant (hay)
	Browsing	Cow eats grass/shrubs present in the test arena
Locomotion	Idling	Cow does not perform any behavior - Standstill
	Walking	Cow walks/wanders in the test arena
	Head shaking	Cow shakes head while standstill
Agonistic, non-desirable	Walking; head shaking	Cow walks and moves head nonnatural movement
	Running/trotting	Cow runs/trots in the test arena
	Running/trotting; head shaking	Cow runs/trot and moves head nonnatural movement
	Jumping	Cow jumps in the test arena
	Jumping and head shaking	Cow jumps and shakes head simultaneously
	Bucking and running	Cow bucks and runs

Item	Run 1	Run 2	Run 3	Run 4	Run 5	Largest SEM	P-value Collar off
Chute score	1.40	1.25	1.30	1.30	1.40	0.109	0.85
Chute exit velocity, m/s	2.10	1.45	1.80	1.85	1.90	0.244	0.37
Collar fit score	1.45^{b}	3.65^{a}	1.60^{b}	1.30^{b}	1.25^{b}	0.197	<0.001

${ }^{\text {a, b }}$ Means within rows with different superscripts differ.

Item	Run 1	Run 2	Run 3	Run 4	Run 5	Largest SEM	P-value
	Collar off	Collar on			Collar of		
Latency to approach feed, s	287	283	455	511	418	73.20	0.12
Time spent in VF, \%	62.7^{a}	22.7^{b}	18.6^{b}	12.2^{b}	$33.6^{\mathrm{a}, \mathrm{b}}$	8.766	<0.01

${ }^{\mathrm{a}, \mathrm{b}}$ Means within rows with different superscripts differ.

- During run 5, if a cow did not attempt to reach the feed, it was encouraged to reach the feed at the end of the run. All cows successfully reached the feed.

Results

Behavior	$\begin{gathered} \text { Run } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { Run } \\ 2 \end{gathered}$	$\begin{gathered} \text { Run } \\ 3 \end{gathered}$	$\begin{gathered} \text { Run } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { Run } \\ 5 \end{gathered}$	Largest SEM	P-value
	Collar off	Collar on			Collar off		
Eating, \%	$47.7^{\text {a }}$	3.85 ${ }^{\text {b }}$	0.955 ${ }^{\text {b }}$	$1.34{ }^{\text {b }}$	24.0 ${ }^{\text {a,b }}$	6.943	< 0.001
Browsing, \%	10.8	5.60	12.0	6.65	19.9	5.09	0.30
Idling, \%	21.9 ${ }^{\text {c }}$	$52.3{ }^{\text {a }}$	54.9 ${ }^{\text {a }}$	57.8 ${ }^{\text {a }}$	$36.6^{\text {a,b,c }}$	6.95	< 0.01
Walking, \%	15.9	17.8	24.9	26.0	18.8	4.01	0.30
Head shaking, \%	0.466	3.50	0.970	1.70	0.250	1.018	0.17
Walking; head shaking, \%	0.485	4.01	0.888	2.83	0.252	1.240	0.15
Running/trotting, \%	0.00	1.14	0.92	0.88	0.00	0.962	0.85
Running/trotting; head shaking, \%	0.00 ${ }^{\text {b }}$	$5.54{ }^{\text {a }}$	$1.60{ }^{\text {b }}$	0.800 ${ }^{\text {b }}$	$0.00{ }^{\text {b }}$	0.815	< 0.001
Jumping, \%	$0.00{ }^{\text {b }}$	$1.08{ }^{\text {a }}$	$0.232^{\text {b }}$	$0.235^{\text {b }}$	$0.00{ }^{\text {b }}$	0.240	0.01
Jumping and head shaking, \%	$0.00{ }^{\text {b }}$	$1.86{ }^{\text {a }}$	$0.927^{\text {a }}$	$0.00{ }^{\text {b }}$	$0.00{ }^{\text {b }}$	0.405	<0.01
Bucking and running, \%	$0.00{ }^{\text {b }}$	$1.25{ }^{\text {a }}$	$0.232^{\text {a,b }}$	$0.00{ }^{\text {b }}$	$0.00{ }^{\text {b }}$	0.307	0.02

[^0]
Results

${ }^{a, b}$ Means with different superscripts differ for AS.
${ }^{x, y}$ Means with different superscripts differ for ES.

Results

Dry Lot Phase:

- The VF was created following the perimeter of the pasture; in Lshaped management zone. The management zones were created from the traditional fence inward to the pasture.
- The AS management zone was 5 m wide and the ES management zone was 15 m wide, therefore combined management zones were 20 m wide.

Results

	Day	Largest	P-value							
Auditory stimulus, count ${ }^{1}$	24.60^{a}	$17.20^{\mathrm{a}, \mathrm{b}}$	$13.20^{\mathrm{a}, \mathrm{b}}$	$14.50^{\mathrm{a}, \mathrm{b}}$	$14.00^{\mathrm{a}, \mathrm{b}}$	7.80^{b}	12.60^{b}	9.90^{b}	2.79	0.002
Electric stimulus, count ${ }^{1}$	14.60^{a}	2.60^{b}	2.70^{b}	1.90^{b}	1.90^{b}	0.90^{b}	1.60^{b}	0.545^{b}	0.687	<0.0001

Dry lot Phase:

- Cow were marinated in the dry lot for 8 days.
- Cows had free access to feed and water in the center of the pasture.

Results

- How do electric cues affect cattle physiology?

Objective

Determine the efficacy of virtual fence technology for reducing cattle use of recently burned sagebrush steppe

Material \& Methods

295 m		125 m
Control	\mapsto	
Virtual fence	N	
Control	ω	
Virtual fence	$\boldsymbol{\square}$	
Control	\square	
Virtual fence	の	

- A total of 6 pastures were used. The perimeter of each individual pasture was fenced with 5 strand barbed wire fence
- Approximately 30 percent of each pasture had been burned the previous fall (red area in the diagram)
- Each pasture had $\mathbf{3}$ mature dry cows for a period of 14 days
- Cattle locations were monitored at 5 minute intervals for the duration of the trial

Material \& Methods

C.S. Boyd, R. O'Connor and J. Ranches et al./Rangeland Ecology \& Management 81 (2022) 55-62

- For Control pastures, collars were left in "tracking" mode and no auditory or electric stimulus was delivered.
- For virtual fence pastures, there was a 30 m wide pressure zone (management zone) within the unburned subplot, extending out from the its junction with the burned subplot. Within this zone, animals encountered a $\mathbf{2 0} \mathbf{~ m}$ wide auditory alert zone within which electronic beeps played on the collars speaker, and this was followed by a $\mathbf{1 0 m}$ wide electric stimuli zone.

- Cows assigned to the control treatment (VF off) spent up to 40\% of their time within the burned area, resulting in a heavy forage utilization of the burned area (approximately 70\%).

Cows assigned to the VF treatment spent less time in the burned area, spending approximately 4\% of their time in the burned area on the first day in the pasture.

Cows assigned to VF treatment were rarely recorded in the burned area, thereafter, resulting in negligible forage utilization of the burned area for this group of approximately < 3\%.

Each dot represent cow location during the study:

Blue dots = control cows,
 VF collars off

WThite dots = treatments cows, VF collars on

Objective

Determine the efficacy of virtual fence technology to reduce fuel load in a predetermined location - To create a fire break

Material and Methods

- 42 mature Angus \times Hereford cows; 26 pairs \& 16 dry - Only cows had collars
- Virtual fence set up as multiple "one-way gates"
- Worked with water locations to improve odds of success
- Target forage utilization was a minimum of 45\%
- Cows grazed for approximately 1 month.

Results

Results

Map Satellite

Results

- Post-trial utilization and posttrial standing crop of herbaceous forage differed by location ($p<$ 0.001) and all locations differed from each other ($p<0.05$).
- Post-trial utilization averaged $48.5 \pm 3.7 \%, 11.8 \pm 3.0 \%$, and 5.5 $\pm 0.7 \%$ for fuel break, pressure zone, and outside locations, respectively
- Post-trial standing crop for the fuel break, pressure zone, and outside locations was $405.9 \pm$ $21.0,533.3 \pm 23.9$, and $697.4 \pm$ 40.2 . kg/ha, respectively.

Results

- The proportion of daily locations within the fuel break-differed (p < 0.001) between dry cows and cows with calves.

Results

- The proportion of daily locations within the fuel break-differed ($p<$ 0.001) between dry cows and cows with calves.
- Dry cows showed no discernable pattern in daily locations within the fuel break over time

Results

- The proportion of daily locations within the fuel break-differed ($p<$ 0.001) between dry cows and cows with calves.
- Dry cows showed no discernable pattern in daily locations within the fuel break over time
- Whereas values for cows with calves decreased over the duration of the trial and had nearly equal odds of being located within or not within the fuel break by the last day of the trial.

1. Use of VF to reduce riparian area disturbance

- Goals is to reduce grazing in riparian areas using VF to exclude cattle from sensitive areas.

Ongoing Research

1. Coordination with remote sensing technology to identify target areas to strategically reduce fuel loads

Rangeland Analysis Platform

- RAP: relative probability of large (> 1,000 acres) rangeland fire. Probabilities are calculated using RAP biomass, RAP cover, and various climate/drought indices.
- Goal to reduce fine fuels load with grazing on identified areas.

Northern Great Basin Experimental Range "Butte" in southeast Oregon

Summary

- Cattle did not develop a negative association with the VF management zones, in fact, cattle quickly learn to avoid the VF management zones upon stimuli, which decreased overtime.
- The use of VF does not seem to interfere with cattle behavior
- Cattle learn to rely primarily on auditory cues, and electric cues does not seem to disturb cattle physiology
- The use of VF was effective at preventing cows from entering or exiting the VF management zones. Not collared calves might impose a challenge.

Not an iron gate but allows management to individual animal level.

Questions?

THANK YOU!

Juliana Ranches | Assistant Professor
Extension Beef Specialist
juliana.ranches@oregonstate.edu
(541) 573-4083

Oregon State University
Eastern Oregon Agricultural Research Center Burns, OR.

[^0]: a, b,c Means within rows with different superscripts differ.

