NM2047

Manure Composting Quick Guide

Mary A. Keena, NDSU Extension Specialist, Livestock Environmental Management

Chryseis Modderman, UMN Extension Educator, Manure Nutrient Management

Melissa L. Wilson, UMN Assistant Professor and Extension Specialist, Manure Management and Water Quality

Jeff Gale, NDSU Foster County Extension Agent, Agriculture and Natural Resources

Characteristics of Successful Composting

Characteristic	Reasonable Range	Preferred Range
Particle size	1/16 to 4 inches	1/8 to 2 inches
Temperature	105 to 160°F	110 to 50°F
Moisture	40% to 65%	50% to 60%
Oxygen	5% to 20%	10% to 15%
C:N (carbon:nitrogen)	20:1 to 40:1	25:1 to 30:1

Source: On-Farm Composting Handbook, NRAES-54 (Rynk et al., 1992)

More information on these characteristics can be found in publication NM1478 (Keena, 2022)

Not enough carbon? Use the table below to add carbonrich materials to raise the C:N

Pounds of bulk material needed to raise C:N to 30:1 (per 100 lb. of manure)

Material to add		Initial ma	anure C:N	C:N	
and its avg. C:N	10:1	15:1	20:1	25:1	
	Pounds of material to add				
Leaves (55:1)	415	215	110	45	
Straw, oat (60:1)	370	190	95	40	
Straw, general (80:1)	295	150	75	30	
Straw, wheat (125:1)	240	125	65	25	
Sawdust (440:1)	195	100	50	20	
Wood shavings (600:1)	190	100	50	20	
Newsprint (625:1)	190	100	50	20	

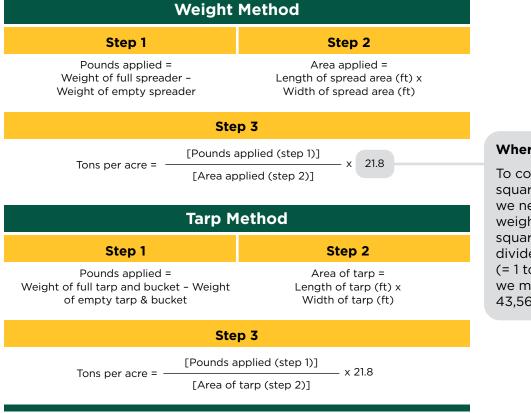
Example: If the manure has a C:N of 15:1, you will need to add 190 pounds of oat straw per 100 pounds of manure to bring the overall C:N up to the desired 30:1.

NDSU EXTENSION

North Dakota State University Fargo, North Dakota February 2022

Too much carbon? Use the table below to add nitrogenrich materials to lower the C:N

Pounds of bulk material needed to raise C:N to 30:1 (per 100 lb. of manure)


Material to add and its	Initial manure C:N			manure C:N	
avg. C:N	35:1	40:1	45:1	50:1	
	P	ounds of m	aterial to ac	bl	
Grass clippings (17:1)	20	35	45	55	
Hay, legume (16:1)	15	30	40	50	
Hay, general (22:1)	40	70	95	115	

Example: If the manure has a C:N of 40:1, you will need to add 35 pounds of grass clippings per 100 pounds of manure to bring the overall C:N down to the desired 30:1.

Source: On-Farm Composting Handbook, NRAES-54 (Rynk et al., 1992)

Calibrating a Manure Spreader

More details can be found in publication NM1418 (Keena, 2021)

Where does 21.8 come from?

To convert pounds per square feet to tons per acre, we need to multiply the weight in pounds by 43,560 square feet (= 1 acre) and divide that by 2,000 pounds (= 1 ton). To simplify this, we multiply by 21.8, which is 43,560/2,000.

Calculating Application Rates

Step 1

Determine P needs of the crop

Crop P needs = Expected yield x Crop P_2O_5 removal

Step 2

Determine Plant Available P (PAP) content of the compost

If the compost analysis reports phosphorus as "P", you can convert it to P_2O_5 by multiplying by 2.29

80% of total P is plant available

PAP = Total P_2O_5 content of compost (from compost analysis) x 0.80

Step 3

Calculate application rate

Application rate (in tons per acre) = Crop P needs (step 1) ÷ PAP (step 2)

Crop P Removal Rates

Сгор	Yield Units	Crop P₂O₅ removal (lb. per yield unit)		
Alfalfa	Tons (air dry)	10.80		
Barley (grain)	Tons (air dry)	0.41		
Barley (grain and straw)	Bushels	0.55		
Canola	Cwt.	1.30		
Corn (grain)	Bushels	0.28		
Corn (silage)	Tons (as fed)	3.80		
Edible beans	Pounds	0.01		
Grass or hay pasture	Tons (air dry)	8.90		
Grass/legume	Tons (air dry)	11.20		
Oats (grain)	Bushels	0.25		
Oats (grain and straw)	Bushels	0.32		
Peas	Pounds	0.01		
Potatoes	Cwt.	0.14		
Red Clover	Tons (air dry)	10.80		
Rye (grain)	Bushels	0.44		
Rye (grain and straw)	Bushels	0.59		
Soybean	Bushels	0.82		
Sugarbeets	Fresh Tons	0.73		
Sunflower	Pounds	0.01		
Sweet corn	Tons	11.00		
Wheat (grain)	Bushels	0.53		
Wheat (grain and straw)	Bushels	0.64		

How much plant-available N has been applied?

10-15% of total N in compost is available the first year (use 0.10 for cattle & lower-N compost, and 0.15 for poultry & higher-N compost)

Plant-available N = Total N content of compost (from compost analysis) x .10 x application rate

References

Keena, M. A. 2022. Composting Animal Manures: A guide to the process and management of animal manure compost. North Dakota State University Cooperative Extension publication NM1478.

Keena, M. A. 2021. Manure Spreader Calibration for Nutrient Management Planning. North Dakota State University Cooperative Extension publication NM1478.

Rynk, R., M. van de Kamp, G. B. Willson, M. E. Singley, T. L. Richard, J. J. Kolega, Gouin, F. R., L. Laliberty, D. Kay, D. W. Murphy, H. A. J. Hoitink, W. F. Brinton. 1992. On-Farm Composting Handbook (NRAES 54). Northeast Regional Agricultural Engineering Service. Ithaca, New York.

Thank you to our reviewers: Lindy Berg, NDSU Extension, Towner County; Renae Gress, NDSU Extension, Morton County; Greg Klinger, UMN Extension, Water Resources Center; and Annie Klodd, UMN Extension, Farmington Regional Office

More information is available at ndsu.edu/agriculture/ag-hub.

The NDSU Extension does not endorse commercial products or companies even though reference may be made to tradenames, trademarks or service names. NDSU encourages you to use and share this content, but please do so under the conditions of our Creative Commons license. You may copy, distribute, transmit and adapt this work as long as you give full attribution, don't use the work for commercial purposes and share your resulting work similarly. For more information, visit www.ag.ndsu.edu/agcomm/creative-commons.

County commissions, North Dakota State University and U.S. Department of Agriculture cooperating. NDSU does not discriminate in its programs and activities on the basis of age, color, gender expression/identity, genetic information, marital status, national origin, participation in lawful off-campus activity, physical or mental disability, pregnancy, public assistance status, race, religion, sex, sexual orientation, spousal relationship to current employee, or veteran status, as applicable. Direct inquiries to Vice Provost for Title IX/ADA Coordinator, Old Main 201, NDSU Main Campus, 701-231-7708, ndsu.eoa@ndsu.edu. This publication will be made available in alternative formats for people with disabilities upon request, 701-231-7781.