

DEVELOPING THE OYSTERBOT FOR OYSTER CAGE RETRIEVAL

Molly Curran¹ and Dale Leavitt²

¹ Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA

² Blue Stream Shellfish, Fairhaven, MA

The Problem:

- Vertical lines in the marine environment are under intense scrutiny in areas where there is risk of entanglement with marine megafauna.
 - i.e. buoy marker lines
- As shellfish aquaculture moves into deeper waters, the challenge is to reduce or eliminate vertical lines in those areas
- Case in point:
 - Blue Stream Shellfish has a licensed growing area (Seal Rock Farm) that is in the vicinity of megafauna entanglement risk
 - In the eyes of the regulatory agencies
 - No whales reported in this area over the past 50 years, that I can find
 - Occasional leatherback & loggerhead sea turtles have been observed
 - Federal Army Corps license was conditioned to reduce the number of vertical lines by one-half and remove them entirely if possible.
 - State license required 600 lb breakaway links on vertical lines

Blue Stream Shellfish – Seal Rock Farm

Fairhaven, MA Lev Bedford Harbor

West Island Farm O

Mattapoisett, MA

Farm Processing Barge

Google Earth

Data SIO, NOAA, U.S. Navy, NGA, GEBCO mage © 2023 TerraMetrics

Blue Stream Shellfish

Seal Rock Farm Operations

total length

- Originally proposed
 - 3 x 3 (9-bay) wire cages
 - 10 cages per trawl line = 90 oyster bags per line
- Evaluating
 - Four 3 x 3 cages merged into one unit = 36 bay cage
 - 3 cages per trawl line = 108 oyster bags per line

Question?

- Can we retrieve cage trawls without any surface buoy markers?
- Option 1:
 - Grapple for the trawl line to retrieve cages
 - A random chance to snag the cage/line
 - Even more random that one snags a targeted line
 - Potential to damage a cage if grappled incorrectly
- Option 2:
 - Locate the targeted cage from the surface
 - Deploy a tool to retrieve the targeted cage
 - Cue the "OysterBot"

Locate cages from the surface?

• Upcoming NSA talk "Can a fish finder find more than fish?"

West Island Farm – January 2023

Blue Stream Shellfish

West Island Farm O

700 ft

Google Earth

West Island - Seed cages on the bottom

West Island – Trawl line of ten 9-bay cages

Retrieve a Targeted Cage?

- A random walk in the woods with my dog!
 - Encountered another dog walker
 - Exchanged pleasantries and discovered she was a robotics engineer at WHOI
 - Pitched the idea of a cage retrieving ROV and Molly bought it!
- Funding acquired through USDA Northeast SARE Farmer's Grant

Northeast Sustainable Agriculture Research and Education

The "OysterBot" Wish List

- Weight & Dimensions
 - Weight <20 kg (44 lbs)
 - Dimensions <60 cm (24") in any dimension
 - Tether length <u>></u>25 m (82')
- Sensory Capacity
 - Real-time video display
 - Direction & Speed Sensor
 - Depth Sensor
 - Temperature Sensor
- Mechanical Capacity
 - Onboard manipulator/gripper

- Performance
 - Thruster configuration for maximum maneuverability
 - Payload ~1 kg
 - Maximum depth >10 m
 - Autocontrol for depth, direction, & speed
 - Lighting available
- Battery Duration
 - 2 4 hours

Basic Platform

- Recommended Provider
 - https://bluerobotics.com/

Base Unit - BlueROV2 Kit

- Live 1080p HD Video (200 ms latency)
- Highly Maneuverable Vectored Thruster Configuration
- Stable and Optimized for Inspection and Research-Class Missions
- Easy to Use, Cross-Platform User Interface
- Highly Expandable with Six Free Cable Penetrators
- 6 T200 Thrusters and Basic ESCs
- Standard 100m Depth Rating and Up to 300m Tether Available
- Battery Powered with Quick-Swappable Batteries for Long Missions

Physical 457 mm Length 18 in Width 338 mm 13.3 in Height 254 mm 10 in Weight in Air (with Ballast and Battery) 11-12 kg 24-27 lb 20-22 lb Weight in Air (*without Ballast or Battery*) 9-10 kg 1.2 kg (4 x Lumens) to 1.4 kg (No Payload Capacity (configuation 2.6 to 3.1 lbs dependent) Lumens) Watertight Enclosure Inner Diameter 4 in 102 mm Watertight Enclosure Inner Length 298 mm 11.75 in **Cable Penetrator Holes** 18 x 10 mm 1 x 0.4 in **Buoyancy Foam** R-3318 Urethane Foam rated to 244 m HDPE frame, aluminum flanges/end cap, & acrylic Construction or aluminum tubes Main Tube (Electronics Enclosure) Blue Robotics 4 in series w/ aluminum end caps Battery Tube Blue Robotics 3 in series w/ aluminum end caps R-3318 Urethane Foam rated to 244 m **Buoyancy Foam Ballast Weight** 9 x 200 g stainless steel weights

Battery Connector

Tether 7.6 mm 0.30 in Diameter Length 25-300 m 80-980 ft Working Strength 45 kgf 100 lbf **Breaking Strength** 160 kgf 350 lbf Strength Member Kevlar with waterblock **Buoyancy in Freshwater** Neutral **Buoyancy in Saltwater Slightly Positive** Conductors 4 twisted pairs, 26 AWG

Lights

Brightness	2 or 4 x 1500 lumens each with dimming control
Light Beam Angle	135 degrees, with adjustable tilt

Camera	
Resolution	1080p
Camera Field of View	110 degrees horizontally
Tilt Range	+/- 90 degree camera tilt (180 total range)
Tilt Servo	Hitec HS-5055MG

Sensors

- 3-DOF Gyroscope
- 3-DOF Accelerometer
- 3-DOF Magnetometer
- Internal barometer
- Blue Robotics Bar 30 Pressure/Depth & Temperature Sensor (external)
- Current and Voltage Sensing
- Leak Detection

Battery (can be changed in about 30 seconds)

Battery Life (Normal Use)	2 hours w/ 18Ah battery	
Battery Life (Light Use)	6 hours w/ 18Ah battery	

Performance

Maximum Rated Depth (Acrylic)	100 m		330 ft
Maximum Rated Depth (Aluminum)	300 m		990 ft
Maximum Forward Speed	1.5 m/s		3 knots
Thrusters	Blue Robotics T200 with WLP		
ESC	Blue Robotics Basic 30A ESC		
Thruster Configuration	6 thrusters		
	- 4 Vectored		
	- 2 Vertical		
Forward Bollard Thrust (45°)	9 kgf		19.8 lbf
Vertical Bollard Thrust	7 kgf		15.4 lbf
Lateral Bollard Thrust (45°)	9 kgf		19.8 lbf

The Parts List

Item	Vendor	Est, cost
BlueROV2 Kit	Blue Robotics	\$3,490.00
Fathom ROV Tether – 50 m	Blue Robotics	\$ 375.00
Lumen Subsea Light x 2	Blue Robotics	\$ 325.00
Fathom Tether Spool	Blue Robotics	\$ 680.00
BlueROV2 Heavy Configuration Retrofit Kit	Blue Robotics	\$ 740.00
Payload Skid	Blue Robotics	\$ 279.00
Newton Subsea Gripper	Blue Robotics	\$ 590.00
Low light HD USB Camera	Blue Robotics	\$ 99.00
Mount for USB Camera	Blue Robotics	\$ 4.00
Camera Tilt System	Blue Robotics	\$ 60.00
Bar30 High Resolution 300m Depth/Pressure Sensor	Blue Robotics	\$ 85.00
PCB for Bar30 High Res Depth/Pressure Sensor	Blue Robotics	\$ 50.00
JST gH to DF13 Adapter, 4-pin	Blue Robotics	\$ 10.00
Celsius Fast-Response Temperature Sensor	Blue Robotics	\$ 70.00
I ² C Bus Splitter	Blue Robotics	\$ 14.00
Lithium-Ion Battery (14.8V 15.6Ah) x 2	Blue Robotics	\$ 330.00
H6 PRO Lithium Battery Charger	Blue Robotics	\$ 160.00
H6 PRO Battery Charger Cable	Blue Robotics	\$ 10.00
Battery Cell Checker	Blue Robotics	\$ 15.00
BlueROV2 Spares Kit	Blue Robotics	\$ 289.00
SOS Leak Sensor	Blue Robotics	\$ 32.00
SOS Probe Tips	Blue Robotics	\$ 3.00
T200 Thruster (spare)	Blue Robotics	\$ 200.00
Speed Controller: Basic ESC (spare)	Blue Robotics	\$ 36.00
Xbox Series X S Wireless Controller	Target	\$ 59.99
VISIONHMD Bigeyes H3 Portable 2.5K (optional)	Amazon	\$ 129.00

The Down Side!

- Someone has to put it together!
 - I naively thought it was a relatively simple task
 - Molly!

- And test it!
 - The scary part
 - Molly!

OysterBot on the Farm (December 2022)

OysterBot on the Farm - Operations

- Need to work through a few glitches
 - Autodepth control needed to be dialed in better
 - Visibility was difficult in full sunlight
 - Vision HMD Bigeyes video goggles (not VR)

OysterBot on the Farm

A lost bag of seed

OysterBot on the Farm

OysterBot on the Farm

F/V Phoenix

Work to be completed

- Develop the hook apparatus
 - Add buoyancy to make neutral in seawater
 - Use light-weight high-strength Spectra-type lifting line to Phoenix
- Test out Bigeye goggles for visibility in bright sunlight

Without inducing motion sickness?

- Evaluate ability to find and engage targeted bottom cages for lifting
- Train crew in the use of the system
 - Uses X-Box controller to fly ROV

Lessons learned to date

- The components to be used for assembling the OysterBot are off-theshelf technology that is non-proprietary in its application and readily available.
 - Estimated cost is about \$8,000 for all the parts
- It has become obvious that assembly of an ROV from component parts is not something that can be routinely completed by an individual with limited experience in mechanical and electronic assembly.
 - The levels of cleanliness and attention to detail required during assembly may be problematic for an inexperienced assembly person.
- Debugging the assembled OysterBot has proven to be necessary as mechanics, firmware, and software controls need to be adjusted for the individual build.
 - While these tasks are not insurmountable, it does take a technical person to make these final adjustments and, again, are probably not achievable by an inexperienced assembler.
- However, the resulting operational ROV appears to be very successful in advancing our goal towards ropeless cage retrieval, at this point in our preliminary evaluation.

Thank you

SARE Progress Report available

https://projects.sare.org/project-reports/fne22-018/

Dale Leavitt

Blue Stream Shellfish

Molly Curran

AOPE - WHOI

