Nitrates in grazed forages How much is too much?

Mary Drewnoski, Beef Systems Specialist

@cattlenerd

Any annual (and even perennials) can accumulate nitrates

- Some plants are more prone than others
- Lambs quarter
- Pigweed
- Brassicas
- Johnson grass
- Millet
- Sudangrass
- Sorghum

- Alfalfa
- Corn
- Small cereals
- Bermudagrass
- Sweetclover

Any situation that reduces growth, but the plant is still living can result in high nitrates

Current dietary nitrate thresholds of various state extension programs

State Extension	Author, Year	Safe to	Toxic to
Program		feed level	feed level
		NO ₃ -N ppm	
Pennsylvania	Adams et al., 1992	< 1000	> 1700
Kansas	Roozeboom et al., 2011	< 1380	> 2070
Nebraska	Rasby et al., 2014	< 1500	> 2100
Oklahoma	Strickland et al., 2017	< 1150	> 2300
Colorado	Whitter, 2014	< 1150	> 2300
Iowa	Ensley and Barnhart, 2012	< 1500	> 2300
UC Davis	Maas, 2001	< 1500	> 4000
Florida	Halsey, 1998	< 1518	> 4048
North Dakota	Stoltenow and Lardy, 2015	< 1500	> 4500

*Calculations done using conversion factors in Adams et al. (1992)

Montana Nitrate Thresholds

NO ₃ -N (ppm)	Comments
<350	Generally safe for all conditions and livestock
350-1130	Generally safe for non-pregnant livestock. Potential early-term abortions or reduced breeding performance. Limit use to bred animals to 50% of the total ration.
1130-2260	Limit feed to 25-50% of ration for non- pregnant livestock. DO NOT FEED TO PREGNANT ANIMALS may cause abortions, weak calves and reduced milk production.
>2260	DO NOT FEED. Acute symptoms and death.

Cash et al. Nitrate Toxicity of Montana Forages

Should we be concerned?

Trial	Forage	N03-N,
		ppm
1452	Oat, Turnip, Radish	6146
1544	Oat, Turnip, Radish	4655
1545	Oat, Turnip, Radish	2158
1546	Oats (Hill)	912
1546	Oats(Valley)	4414
1641	Oats (Hill)	3921
1641	Oats (Valley)	8026

Translational Animal Science, 2022, **6**, 1–6 https://doi.org/10.1093/tas/txac023 Advance access publication 8 February 2022 **Review**

Is it time to rethink our one-size-fits-all approach to nitrate toxicity thresholds in forages?

Mary Beth Reynolds, and Mary E. Drewnoski¹

Department of Animal Science, University of Nebraska Lincoln, Lincoln, NE 68583-0908, USA ¹Corresponding author: mdrewnoski2@unl.edu

Methemoglobin

• Clinical signs 40% to 60% methemoglobin

Death 70% to 90% methemoglobin
– (Burrows et al., 1987; Hibberd et al., 1994).

Abortions?

Most abortions occur after methemoglobin concentrations reach near lethal levels
– (Davison et al., 1964; Crawford et al., 1966).

- Methemoglobin maintained at 40% to 50% for 7 months resulted no detrimental effects to pregnancy maintenance in heifers
 - (Winter and Hokanson, 1964).

Establishing Guidelines

- LD_{50} Lethal Dose for 50% of test population
- Bradley et al., 1940
 - Drench with nitrate solution into rumen
 - Identified LD_{50} at 3,087 ppm NO_3 -N
 - Suggested 2,100 ppm NO_3 -N to be set as "safe" level
- Davison et al, 1964
 - Top dressed hay -2,181 or 3301 ppm NO₃-N
 - 10% death rate (2/20 heifers) for 3301 ppm NO₃-N and increased service to conception (2.6 vs 1.3)
 - No negative effect at 2,181 ppm NO_3 -N

Establishing Guidelines

Crawford et al., 1966

- Hypothesized NO₃ in feed would reduce intake rate and increase tolerance
- Similar LD_{50} (3,040 ppm NO₃-N) when drenched
- LD₅₀ at 9,119 ppm NO₃-N when dosed through hay
 - Natural in oat hay vs sprayed on hay no difference in threshold

Key factors in the potential for toxicity

- Rate of intake
- Moisture content of forage

- Rate of nitrate release (Geurink et al., 1979; Kemp, 1982)

- Microbial population
 - Up to 23,000 ppm NO₃N fed to adapted sheep (Alaboudi and Jones, 1985)
- Energy content of diet /forage quality

- (Sapiro et al., 1949; Burrows et al., 1987)

Reynolds and Drewnoski, 2022 TAS

Potential mitigation factors when grazing

- Slower rate of intake
- Diet "type"
 - Fresh cells release NO₃ slower than hay
- Diet Quality
- Adaptation
 - Top-down grazing
 - Leaves < Stems in NO₃ accumulation

Grazing higher nitrate forages

- Management Strategies to Mitigate Nitrate Toxicity
 - Make sure cattle are full before turn out
 - Graze lightly
 - Adapt Gradually?
 - Supplement energy?

Brassicas: are they a problem?

Overall Implications

- Current recommendations are conservative
- Need to focus on helping producers understand what increases and decreases risk

