Co-Products and Applications of Industrial Hemp for New Mexico Agriculture

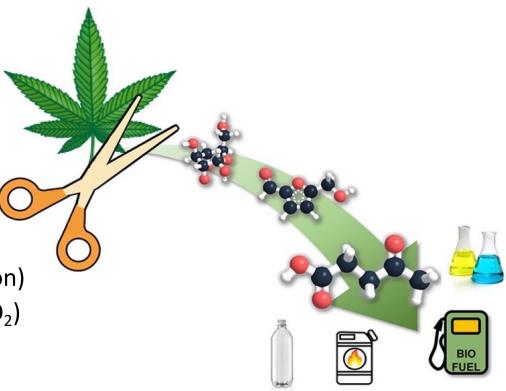
HANAH T. RHEAY

College of Engineering

Department of Chemical & Materials Engineering

BE BOLD. Shape the Future. **New Mexico State University**

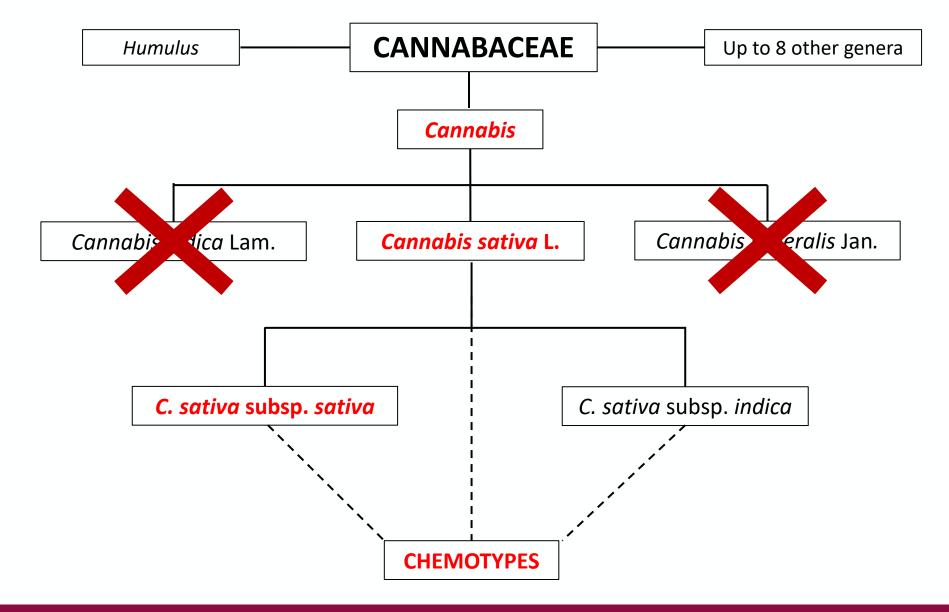
Overview


- Hemp Background
- 2022 Field Trial
- Flower Characterization
 - Essential Oils (Steam Distillation)
 - Cannabinoids (Supercritical CO₂)

Lignocellulosic Waste

- Knowledge Gap: Fibers from High-CBD Crop
- Compositional Analysis
- Conclusions & Future Work
 - Hydrolysis & Fermentation

Tulaphol, S., Hossain, M. A., Rahaman, M. S., Liu, L. Y., Phung, T. K., Renneckar, S., Grisdanurak, N., & Sathitsuksanoh, N. (2020). Direct Production of Levulinic Acid in One Pot from Hemp Hurd by Dilute Acid in Ionic Liquids. *Energy and Fuels*, *34*(2), 1764–1772. <u>https://doi.org/10.1021/acs.energyfuels.9b03134</u>


What is Hemp?

- Hemp is defined as *Cannabis sativa* L. with ≤ 0.3% total tetrahydrocannabinol (THC)
- U.S. re-legalized crop in 2018, following nearly 70 years of prohibition

Bloodhound Hemp Farms. (2020). Graphic: CBD vs Hemp - The Crop of 50,000 Uses. <u>https://www.bloodhoundhempfarms.com/post/graphiccbd-vs-hemp-the-crop-of-50-000-uses</u>

Cannabis Chemotypes

Total THC = THC + (0.877)*THCA Total CBD = CBD + (0.877)*CBDA

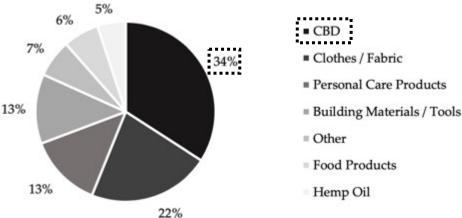
• Chemotype (or chemovar) = chemical phenotype

Chemotype	Dominant Cannabinoid	Major Composition	THC:CBD
I. Medicinal / Drug (Marijuana)	THC	> 0.3% THC; < 0.5% CBD	5:1 - 30:1
II. Intermediate	Balanced	alanced > 0.3% THC; > 0.5% CBD	
III. Hemp	Cannabidiol (CBD)	< 0.3% THC; > 0.5% CBD	1:8 – 1:25
IV. Hemp	Cannabigerol (CBG)	> 0.3% CBG; < 0.5% CBD	-
V. Hemp	None	< 0.1% all cannabinoids	-

Mandolina & Carboni. (2004). Potential of marker-assisted selection in hemp genetic improvement. *Euphytica*, *140*(1), 107-120. <u>https://doi.org/10.1007/s10681-004-4759-6</u>

Schillaci, E. (2023). What are Cannabis chemotypes and chemovars? Fast Buds. https://2fast4buds.com/news/what-are-cannabis-chemotypes-and-chemovars.

Blesching, U. (2020). Cannabis Chemotypes. Cannakeys. https://cannakeys.com/cannabis-chemotypes/


Types of Hemp by Product Category

• Types of hemp: 1) CBD/essential oil; 2) grain; 3) fiber

Different hemp types: (left) CBD-type; (right) industrial-types

- Different morphology, physiology, and chemical profile between types
- Current US market is dominated by cannabidiol (CBD) products

Food Products

Kolodinsky, J., Lacasse, H., & Gallagher, K. (2020). Making hemp choices: Evidence from Vermont. Sustainability, 12(15), 1–15. https://doi.org/10.3390/SU12156287

PLANT PRODUCTION

2022 Field Trials

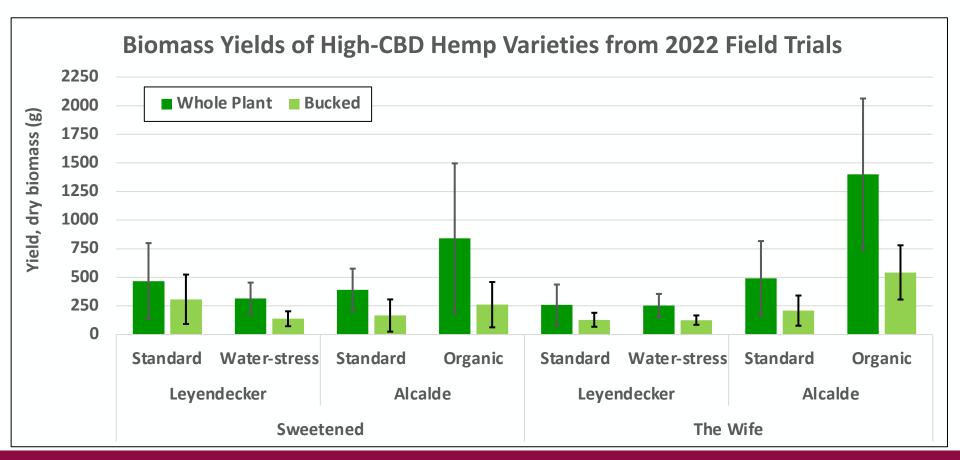
Plot Management Details					
Location	Treatment Plot	Common Plot			
Leyendecker	Water stress:	Bi-weekly			
Plant Science	watered with 50%	fertilizer			
Research	lower frequency than	application			
Center	standard plot	(12-4-8)			
Sustainable	Organic fertilizer:				
Agricultural	treated with OMRI	Water application			
Science Center	certified organic	minimum once			
at Alcalde	fertilizer (11-3-8)	per week			

Varieties &	Planting Density	Planting & Harvest Dates		
Variety	Density	Location	Planting	Harvest
The Wife	Transplants,	Plant Science Research Center at Leyendecker	April 18	Sept. 13
Sweetened	• •	Sustainable Agricultural Science Center at Alcalde	May 13	Sept. 28

Challenge: Fiber/Grain Production at Low-Latitudes

• PREMATURE FLOWERING

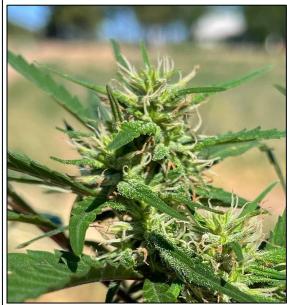
- Reproductive structures appear as early as 2 weeks after seeding for some varieties
- Hemp is photoperiod sensitive
- Most industrial genetics are sourced from northern latitudes



Plants exhibiting premature formation of female (top) and male (bottom) reproductive floral structures

Total vs. Bucked Biomass

• 34-69% of total crop weight was fiber across all samples

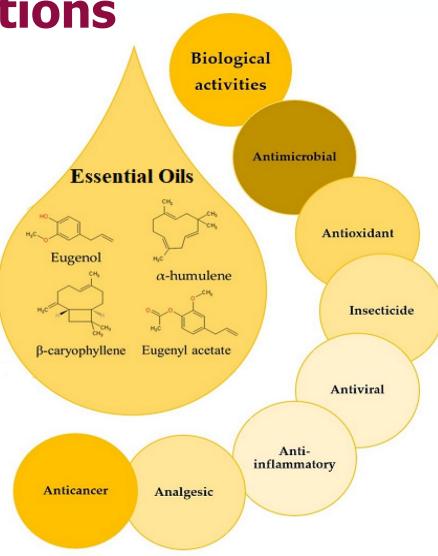

Bucking: to strip herbaceous biomass from stalks/stems (bucked yield = leaf + flower)

FLOWER CHARACTERIZATION

Hemp Flower

- Female flowers are the primary source of cannabinoids
 - Accumulated in glandular trichomes
- TRICHOMES

- Male flowers contain pollen
 - Needed for seed production (grain)
 - Can adversely affect cannabinoid content



Leafly. 2020. *Marijuana plant anatomy and life cycles*. https://www.leafly.com/learn/growing/marijuana-plant-anatomy

Small, E. & Naraine, S. G. U. (2016). Size matters: evolution of large drug-secreting resin glands in elite pharmaceutical strains of *Cannabis sativa* (marijuana). *Genetic Resources and Crop Evolution, 63,* 349-359. <u>https://doi.org/10.1007/s10722-015-0254-2</u>

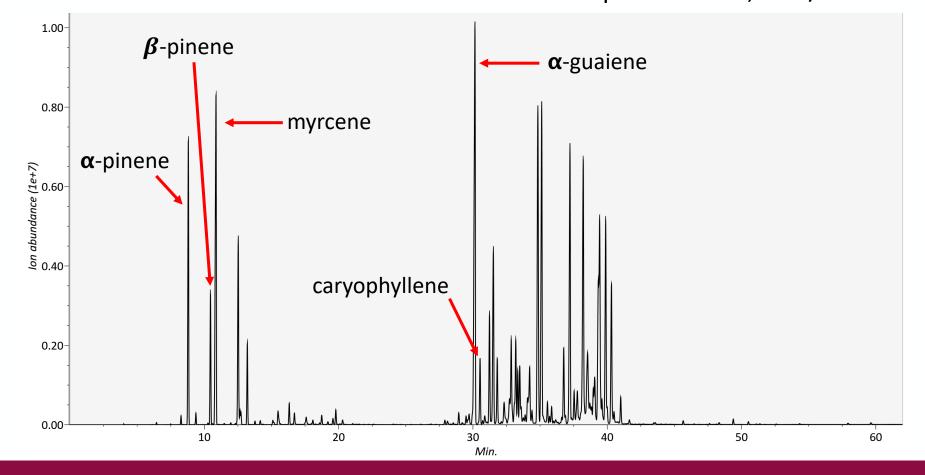
Essential Oil Applications

- Complex mixtures of lowmolecular weight, volatile compounds
- Utilized as aromatic/flavoring ingredient; for nutraceutical and personal care products
- Effects related to profiles; synergy between compounds
- Over 100 unique compounds reported in hemp

Mohamed, A.A. & Alotaibi, B.M. (2022). Essential oils of some medicinal plants and their biological activities: a mini review. *Journal of Umm Al-Qura University for Applied Sciences, 9*, 40-49. <u>https://doi.org/10.1007/s43994-022-</u> 00018-1

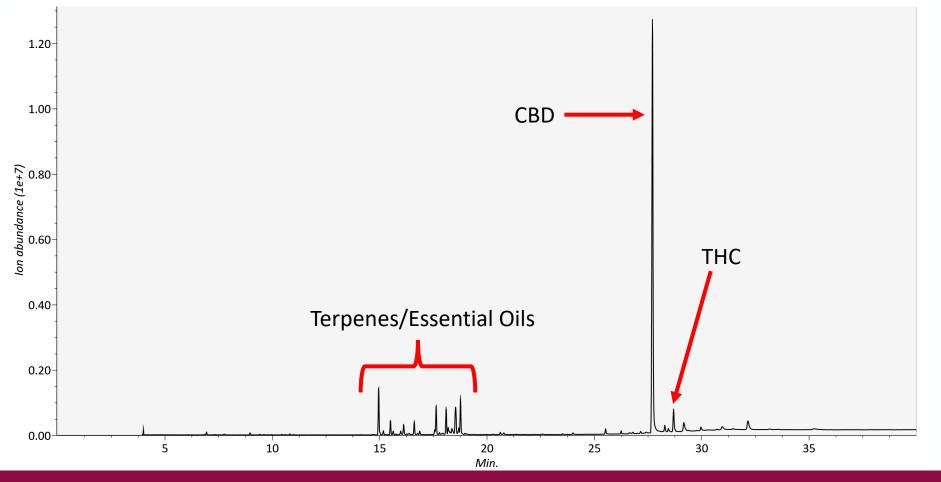
Average Yield of Essential Oils (mL/100g)

<u>Steam Distillation</u> 100 g in 3 L for 4 h


Location	Variety	Treatment	Yield	
	Sweetenad	Standard	1.01	
Lovendeeker	Sweetened		0.72	
Leyendecker	Wife		1.26	
	vviie	Water-stress	1.12	
	Sweetenad	Standard	1.25	
	Sweetened	Standard1.0Water-stress0.7Standard1.2Water-stress1.1Standard1.2Organic1.2Standard1.2Standard1.2	1.21	
Alcalde	\\/ifa		1.75	
Wife Organic		Organic	1.40	

- Both factors were significant for standard plots (variety, P = 0.0485; location, P = 0.0433)
- At Leyendecker for water-stress, variety was significant (P = 0.0333)
- At Alcalde for organic plots, no significance (factors: variety, treatment)

Essential Oils: Steam Distillation


Gas Chromatography-Mass Spectrometry analysis DB-5 column Ramp: 60-246 °C, 3 °C/min

Cannabinoid Extract: Supercritical CO₂

<u>Supercritical CO₂</u> Flow rate: 50 g/min Co-solvent: 5% EtOH Temp.: 60 °C, Runtime: 30min

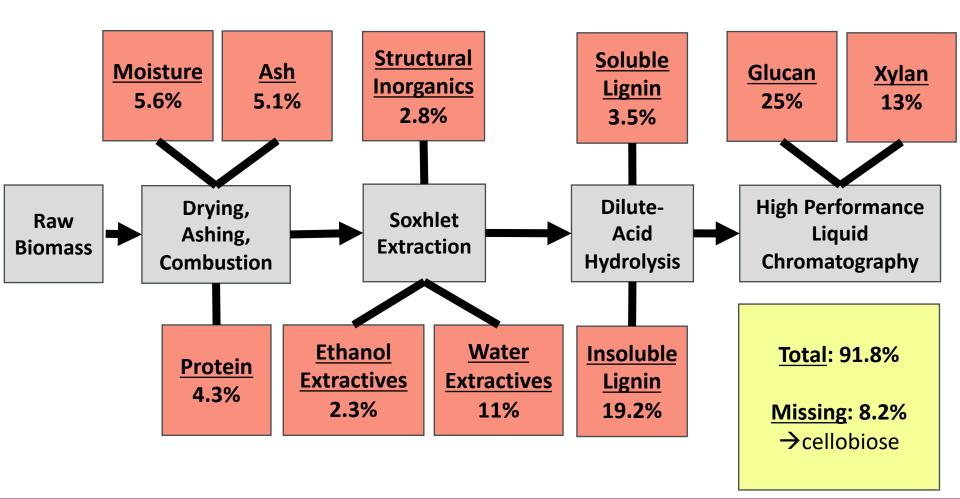

LIGNOCELLULOSIC WASTE

Hemp Fibers

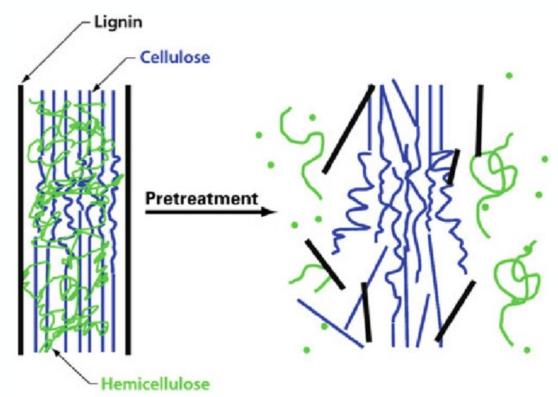
- Traditional processing requires a decorticator to separate bast/hurd
- Minimal information is available on fibers of highcannabinoid varieties

Harvesting Hemp: Reflecting on Opportunities with the One Acre Exchange. (2020). Fibershed. <u>https://fibershed.org/2020/09/16/harvesting-hemp-</u> <u>reflecting-on-opportunities-with-the-one-acre-exchange/</u>

Comparison to Grain & Fiber Type Hemp

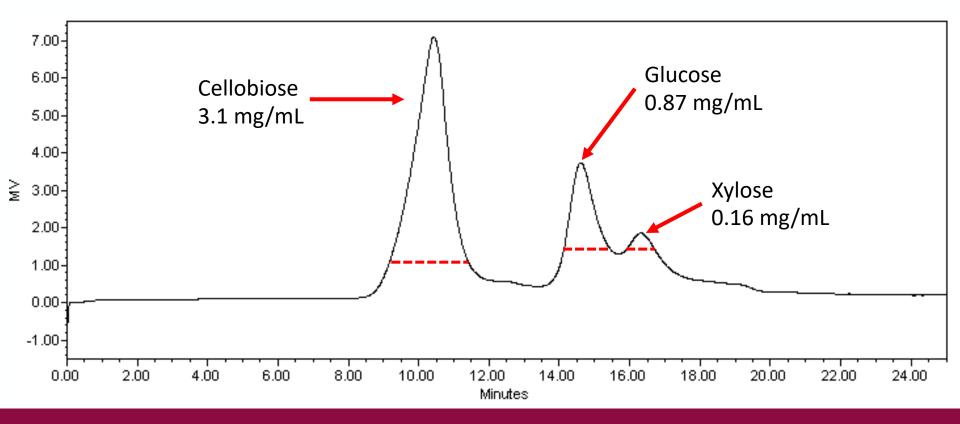

Reported Average Values for Structural Components in Untreated Hemp Fiber Samples					
Fiber Sample	Glucan [%]	Xylan [%]	Lignin [%]	Reference	
Industrial hemp (Futura 75; < 1mm particle size)	36.5	17.0	21.9	Das et al., 2017	
Industrial hemp (11 cultivars)	43.81-51.14	11.63-14.2	15.35-29.35	Das et al., 2020	
Industrial hemp (Felina 32; conventional cultivation)	39.8	14.4	15.0	Kuglarz et al., 2014	
Industrial hemp (Felina 32; organic)	42	14.8	13.2		
Industrial hemp (Fedora 17)	46.4	20.1	15.0	Kuglarz et al., 2016	
Industrial hemp (unspecified variety; hurds only; 40-60 mesh sizes)	42.37	19.2	17.5	Moxley et al., 2008	
Industrial hemp (unspecified variety; powered; bast)	57.5	1.6	16.2	Singh at al. 2019	
Industrial hemp (unspecified variety; powdered; shives)	42.9	19.9	23.9	— Singh et al., 2018	
Industrial hemp (4 varieties)	33.56-44.52	10.62-15.48	17.92-21.48	Viswanathan et al., 2020	
CBD hemp (ACDC x Cherry Wine)	32.63	12.90	16.98		
Industrial hemp (4 varieties)	40.12-42.71	12.53-16.56	14.56-17.79	Zhao et al., 2020a	
Industrial hemp (Tygra)	40.66	13.25	15.74	Zhao et al., 2020b	

How similar are fibers from high-CBD types to fibers from fiber/grain types?


Fiber Mass Balance (w/w%)

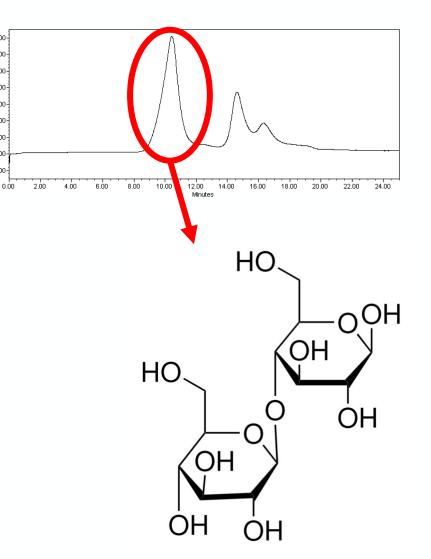
Structural Components

- Dilute-acid assisted hydrolysis
 - 72% H₂SO₄, 30 °C
 water bath for 1 h
 - 4% H₂SO₄, autoclave, 121 °C for 1 h
- Determine lignin from acid-soluble/insoluble fractions and total sugars (glucose + xylose) in hydrolysis liquor



Ji, X., Huang, H., Nie, Z., Qu, L., Xu, Q., & Tsao, G.T. (2012). Fuels and Chemicals from Hemicellulose Sugars. *Advances in biochemical engineering/biotechnology.* 128, 199-224. <u>https://doi.org/10.1007/10_2011_124</u>

Structural Sugar Profile


- <u>High performance liquid</u> <u>chromatography (HPLC)</u>:
 - Shodex sugar column
 - Water mobile phase
 - Refractive index (RI)

Hydrolysis Troubleshooting

- Cellobiose → disaccharide formed by the condensation of two glucose molecules
- Indicative of incomplete hydrolysis
 - Hydrolysis time?
 - Sulfuric acid concentration?

7.00

5.00-4.00-≩ 3.00-

> 2.00-1.00-0.00--1.00-

Structural Sugar Content (mg/mL)

ONGOING

Location	Variety	Treatment	Cellobiose	Glucose	Xylose
Leyendecker	Sweetened	Standard	3.22	0.95	0.46
		Water-stress	-	-	-
	Wife	Standard	3.20	0.84	0.58
		Water-stress	3.75	0.89	0.44
Alcalde	Sweetenad	Standard	3.16	0.76	0.47
	Sweetened	Organic	-	-	-
	Wife	Standard	2.98	0.93	0.24
		Organic	-	-	-

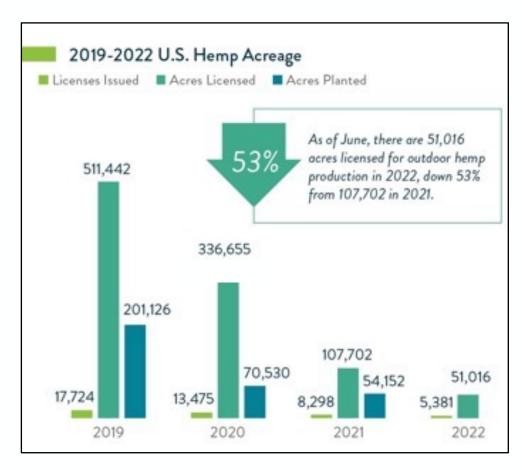
 Glucose concentration data from use of this method is less reliable when cellobiose content is > 3 mg/mL

CONCLUSIONS & CONSIDERATIONS

Can fibers from high-CBD hemp be used alongside fibers from industrial types as feedstock for bio-based chemicals?

Conclusions

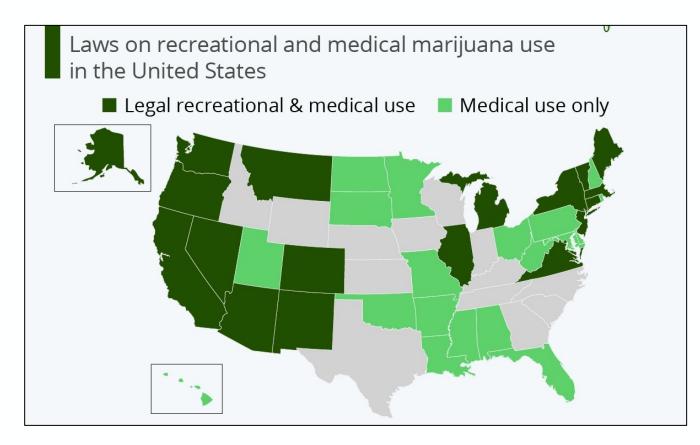
- Values in most compositional categories fall within ranges reported for other hemp types (ash, extractives, protein, total lignin)
- Estimated glucan content is half of expected amount based on literature
- Large presence of cellobiose likely explains decreased glucan content
- Feedstock may need more rigorous hydrolysis conditions



Why does this matter?

Hemp's Future in New Mexico

- Industrial hemp production slow to develop
 - Difficulty growing grain/fiber varieties at low latitudes
 - Limited access to processing
- Many hemp growers have switched to recreational production



Singular, E. (2022). Midterm Review: A 2022 U.S. Hemp Production Outlook. New Frontier Data. <u>https://newfrontierdata.com/cannabis-insights/midterm-</u> review-a-2022-u-s-hemp-production-outlook/

Expansion of Cannabis Legalization

 NM Cannabis Control Division has issued 851 active producer/ micro-producer licenses (as of 8/27/23)

New Mexico Cannabis Control Division. (2023). https://qimw5q0w5j.execute-api.us-west-2.amazonaws.com/prod/plants.html

Buchlolz, K. (2022). The state of marijuana legalization in the U.S. *Statista*. <u>https://www.statista.com/chart/6681/the-states-where-its-legal-to-smoke-marijuana/</u>

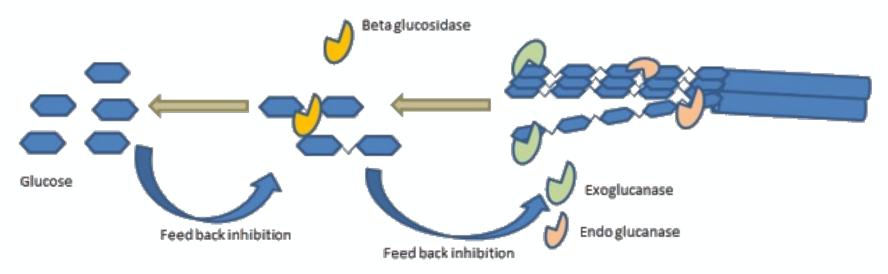
Potential Economic Value-Added

 How much residual fiber material is available from high-cannabinoid production?

<u>Given</u>: 520,105 plants (state count as of 8/27/23), NM Cannabis Control Division)

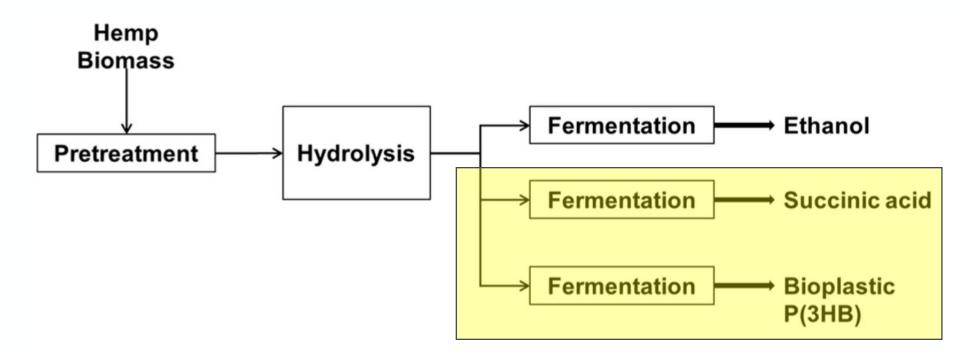
Assuming: Average flower yield of 1.5 lb as 60% of total plant weight

<u>Biomass Availability</u>: 40% of 2.5 lb gives 1 lb fiber per plant 1 lb/plant * 520k plants = 520k lb fiber


Estimate ~500k lb of fiber waste available annually
 What is the value of biomass for bioconversion?

New Mexico Cannabis Control Division. (2023). https://qimw5q0w5j.execute-api.us-west-2.amazonaws.com/prod/plants.html

Next Steps: More Hydrolysis


- Investigate effect of different pretreatment conditions on extent of hydrolysis
- Subject pretreated material to enzymatic hydrolysis; identify most effective conditions

Enzymatic Hydrolysis. (n.d.) Celignis Analytical. https://www.celignis.com/enzymes.php

Next Steps: Fermentation Pathways

Ji, A., Jia, L., Kumar, D., & Yoo, C. G. (2021). Recent advancements in biological conversion of industrial hemp for biofuel and value-added products. *Fermentation*, 7(1). <u>https://doi.org/10.3390/fermentation7010006</u>

Acknowledgements

- Funding sources: COE, ACES, WSARE
- Dave Lowry, Ryan Garcia, and Rob Heyduck; additional superintendents, farm managers, and staff at field trial locations
- Undergraduate students from Brewer Research Group
- Rich Global Hemp and KonopiUS for providing hemp material

BE BOLD. Shape the Future. College of Engineering

BE BOLD. Shape the Future. College of Agricultural, Consumer and Environmental Sciences

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, through the Western Sustainable Agriculture Research and Education program under project number GW21-220. USDA is an equal opportunity employer and service provider. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Thank you!

Contact Information

Hanah Rheay

New Mexico State University

Department of Chemical and Materials Engineering

handsr@nmsu.edu

