

Account No.: 93997

Biological Soil Analysis Report

1410301	Invoice No. :		IY LLC	SOIL & UP AGRONO
09/05/2023	Date Received :			PO BOX 616
09/07/2023	Date Reported :	50571	IA	ALGORA
54992	Lab No. :			

Results For : LUCHAS FARM/GETTING FARMS LTD Sample ID 1 : 1 Sample ID 2 :

PLFA Soil Microbial Community Analysis

Functional Group Biomass & Diversity

Total Living Microbial Biomas Functional Group Diversity In		atty Acid (PLFA	a) ng/g	2928.12 1.429
	Total Biomass	Diversity	Rating	
	< 500	< 1.0	Very Poor	
	500+ - 1000	1.0+ - 1.1	Poor	
	1000+ - 1500	1.1+ - 1.2	Slightly Below Average	
	1500+ - 2500	1.2+ - 1.3	Average	
	2500+ - 3000	1.3+ - 1.4	Slightly Above Average	
	3000+ - 3500	1.4+ - 1.5	Good	
	3500+ - 4000	1.5+ - 1.6	Very Good	
	> 4000	> 1.6	Excellent	
Functional Group			Biomass, PLFA ng/g	% of Total Biomass
Total Bacteria			1261.63	43.09
Gram (+)			964.66	32.94
Actinomycetes			311.92	10.65
Gram (-)			296.98	10.14
Rhizobia			0.00	0.00
Fotal Fungi			306.96	10.48
Arbuscular Mycorrhizal			74.54	2.55
Saprophytes			232.42	7.94
Protozoa			0.00	0.00
Undifferentiated			1359.53	46.43

Reviewed By : Willie Pretorius	10/5/2023	Copy : 1	Page 1 of 2
Bus: 308-234-2418	web site	•	ve., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Community Composition Ratios

Fungi:Bacteria

0.2433

Bacteria tend to dominate in systems with fewer organic inputs or residues possibly leading to a lower C:N ratio. In addition, bacteria can be more prominent in the early spring or late fall as soil temperatures are usually cooler and vegetation is less active or absent. Dry conditions, slightly alkaline to alkaline pH values, or increased land disturbance through prolonged and extensive tillage, grazing, or compaction may also favor bacteria. While bacteria are important and needed in the soil ecosystem, fungi are desired and more often considered indicators of good soil health. Increased use of cover crops and/or other organic inputs and less soil disturbance should help the soil support more fungi. Adjustments to pH may also be recommended in some more extreme circumstances.

Predator:Prey

ALL PREY

This ratio is also expressed as protozoa to bacteria. Protozoa feed on bacteria which helps release nutrients, especially nitrogen. A higher ratio indicates an active community where base level nutrients are sufficient to support higher trophic levels or predators. However, this ratio will always be a relatively low number because the prey will greatly outnumber the predators.

Gram (+):Gram (-)

3.2482

Gram (+) bacteria typically dominate early in the growing season and/or following a fallow period. They also survive better under certain environmental conditions or stressors such as drought or extreme temperatures due to their ability to form spores. Therefore, it is common to see higher values when the community is coming out of dormancy or is stressed. These values will typically begin to approach those of a more balanced bacterial community as the soil conditions become more favorable throughout the growing season. A gram (-) dominated soil may be due to anaerobic conditions or other stressors such as pesticide application or heavy metal contamination.

Scale	Rating		
< 0.05	Very Poor		
0.05+ - 0.1	Poor		
0.1+ - 0.15	Slightly Below Average		
0.15+ - 0.2	Average		
0.2+ - 0.25	Slightly Above Average		
0.25+ - 0.3	Good		
0.3+ - 0.35	Very Good		
> 0.35	Excellent		
[

Scale		Rating
< 0.002		Very Poor
0.002+ - 0.00)5	Poor
0.005+ - 0.00)8	Slightly Below Average
0.008+ - 0.01	l	Average
0.01+ - 0.01	13	Slightly Above Average
0.013+ - 0.01	16	Good
0.016+ - 0.02	2	Very Good
> 0.02		Excellent
Scale	Rating	
< 0.5	Gram	(-) Dominated
0.5+ - 1.0	Slight	ly Gram (-) Dominated
1.0+ - 2.0	Balan	ced Bacterial Community
2.0+ - 3.0	Slightly Gram(+) Dominated	
3.0+ - 4.0	Gram	(+) Dominated
> 4.0	Very	Gram(+) Dominated

Stress and Community Activity Ratios

/	,	
Sat:Unsat	2.6472	Bacteria alter their membranes under various environmental conditions in order to maintain optimal fluidity for nutrient and waste transport into and out of the cell. Saturated fatty acids may reflect a better adapted community to current environmental conditions. Communities under stressed conditions will increase their proportion of unsaturated fatty acids. This will likely occur most often as a result of low soil moisture or drastic changes in temperature. In general, a higher number indicates a healthier and more stable community.
Mono:Poly	31.9162	The ratio of monounsaturated to polyunsaturated fatty acids is used along with the sat:unsat ratio to further indicate the degree of community stress. A higher ratio indicates less stress, while a lower ratio would depict higher levels of prolonged stress due to conditions such as temperature, moisture, pH, or nutrient availability (starvation).
Pre 16:1ω7c:cy17:0	1.5056	Cyclo (cy) fatty acids are more prominent during stationary phases of growth or under high stress conditions
Pre 18:1ω7c:cy19:0	0.5981	that influence membrane fluidity and growth rates such as temperature, pH, moisture, and nutrient availability. In general, a higher number or all Pre16/Pre18 is better and indicates an actively growing community experiencing fewer stressors. These values are typically higher early in the growing season (planting) when the community is becoming active and experiencing fast growth. The values may begin to drop towards the end of the growing season (harvest) following a decrease in plant growth activity or as the community approaches a stationary growth phase as the temperature/moisture changes between the seasons.

All ratios should be looked at separately, but should also be taken into context and compared with one another to better understand the big picture. These are general guidelines and statements regarding soil microbial communities. In addition, the scales and ranges presented here are specific for the type of extraction and analytical methods used for PLFA analysis at Ward Laboratories, Inc. They will not necessarily reflect ranges derived from other methods of analysis or the literature. The scales can and should be adjusted slightly depending on the time of year and conditions at sampling along with the climate and soil type of specific regions where comparisons are being made. Conditions such as time of year, past and present crop, moisture, pH, and fertility should be noted or measured close to sampling for PLFA analysis for a more in depth interpretation of results.

Reviewed By : Willie Pretorius	10/5/2023	Copy:1	Page 2 of 2
Bus: 308-234-2418	web site	4007 Cherry Ave., F	
Fax: 308-234-1940	www.wardlab.com	Kearney, Nebraska	

Lab No.: 54,992

Account No.: 93997

Biological Soil Analysis Report

SOIL & UP AGRON	OMY LLC	Invoice No. :	1410301
PO BOX 616		Date Received :	09/05/2023
ALGORA	IA 50571	Date Reported :	09/07/2023
		Lab No. :	54993

Results For : LUCHAS FARM/GETTING FARMS LTD Sample ID 1 : 2 Sample ID 2 :

PLFA Soil Microbial Community Analysis

Functional Group Biomass & Diversity

Total Living Microbial Biomas Functional Group Diversity In		atty Acid (PLF	A) ng/g	3262.11 1.496
	Total Biomass	Diversity	Rating	
	< 500	< 1.0	Very Poor	
	500+ - 1000	1.0+ - 1.1	Poor	
	1000+ - 1500	1.1+ - 1.2	Slightly Below Average	
	1500+ - 2500	1.2+ - 1.3	Average	
	2500+ - 3000	1.3+ - 1.4	Slightly Above Average	
	3000+ - 3500	1.4+ - 1.5	Good	
	3500+ - 4000	1.5+ - 1.6	Very Good	
	> 4000	> 1.6	Excellent	
Functional Group			Biomass, PLFA ng/g	% of Total Biomass
Total Bacteria			1549.17	47.49
Gram (+)			1083.00	33.20
Actinomycetes			351.51	10.78
Gram (-)			466.18	14.29
Rhizobia			0.00	0.00
Total Fungi			525.82	16.12
Arbuscular Mycorrhizal			95.61	2.93
Saprophytes			430.21	13.19
Protozoa			10.51	0.32
Undifferentiated			1176.59	36.07

Reviewed By : Willie Pretorius	10/5/2023	Copy : 1	Page 1 of 2
Bus: 308-234-2418	web site		ve., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Community Composition Ratios

Fungi:Bacteria

0.3394

Bacteria tend to dominate in systems with fewer organic inputs or residues possibly leading to a lower C:N ratio. In addition, bacteria can be more prominent in the early spring or late fall as soil temperatures are usually cooler and vegetation is less active or absent. Dry conditions, slightly alkaline to alkaline pH values, or increased land disturbance through prolonged and extensive tillage, grazing, or compaction may also favor bacteria. While bacteria are important and needed in the soil ecosystem, fungi are desired and more often considered indicators of good soil health. Increased use of cover crops and/or other organic inputs and less soil disturbance should help the soil support more fungi. Adjustments to pH may also be recommended in some more extreme circumstances.

Predator:Prey

0.0068

This ratio is also expressed as protozoa to bacteria. Protozoa feed on bacteria which helps release nutrients, especially nitrogen. A higher ratio indicates an active community where base level nutrients are sufficient to support higher trophic levels or predators. However, this ratio will always be a relatively low number because the prey will greatly outnumber the predators.

Gram (+):Gram (-)

2.3231

Gram (+) bacteria typically dominate early in the growing season and/or following a fallow period. They also survive better under certain environmental conditions or stressors such as drought or extreme temperatures due to their ability to form spores. Therefore, it is common to see higher values when the community is coming out of dormancy or is stressed. These values will typically begin to approach those of a more balanced bacterial community as the soil conditions become more favorable throughout the growing season. A gram (-) dominated soil may be due to anaerobic conditions or other stressors such as pesticide application or heavy metal contamination.

Poor
y Below Average
je
y Above Average
Good
JUUU

Lab No.: 54,993

Scale		Rating
< 0.002		Very Poor
0.002+ - 0.005		Poor
0.005+ - 0.00	8	Slightly Below Average
0.008+ - 0.01		Average
0.01+ - 0.01	3	Slightly Above Average
0.013+ - 0.01	6	Good
0.016+ - 0.02		Very Good
> 0.02		Excellent
Scale	Rating	
< 0.5	Gram	(-) Dominated
0.5+ - 1.0	Slight	ly Gram (-) Dominated
1.0+ - 2.0	Balan	ced Bacterial Community
2.0+ - 3.0	Slightly Gram(+) Dominated	
3.0+ - 4.0	Gram	(+) Dominated
> 4.0	Very	Gram(+) Dominated

Stress and Community Activity Ratios

Sat:Unsat	1.9402	Bacteria alter their membranes under various environmental conditions in order to maintain optimal fluidity for nutrient and waste transport into and out of the cell. Saturated fatty acids may reflect a better adapted community to current environmental conditions. Communities under stressed conditions will increase their proportion of unsaturated fatty acids. This will likely occur most often as a result of low soil moisture or drastic changes in temperature. In general, a higher number indicates a healthier and more stable community.
Mono:Poly	4.9190	The ratio of monounsaturated to polyunsaturated fatty acids is used along with the sat:unsat ratio to further indicate the degree of community stress. A higher ratio indicates less stress, while a lower ratio would depict higher levels of prolonged stress due to conditions such as temperature, moisture, pH, or nutrient availability (starvation).
Pre 16:1ω7c:cy17:0	1.6670	Cyclo (cy) fatty acids are more prominent during stationary phases of growth or under high stress conditions
Pre 18:1ω7c:cy19:0	0.8946	that influence membrane fluidity and growth rates such as temperature, pH, moisture, and nutrient availability. In general, a higher number or all Pre16/Pre18 is better and indicates an actively growing community experiencing fewer stressors. These values are typically higher early in the growing season (planting) when the community is becoming active and experiencing fast growth. The values may begin to drop towards the end of the growing season (harvest) following a decrease in plant growth activity or as the community approaches a stationary growth phase as the temperature/moisture changes between the seasons.

All ratios should be looked at separately, but should also be taken into context and compared with one another to better understand the big picture. These are general guidelines and statements regarding soil microbial communities. In addition, the scales and ranges presented here are specific for the type of extraction and analytical methods used for PLFA analysis at Ward Laboratories, Inc. They will not necessarily reflect ranges derived from other methods of analysis or the literature. The scales can and should be adjusted slightly depending on the time of year and conditions at sampling along with the climate and soil type of specific regions where comparisons are being made. Conditions such as time of year, past and present crop, moisture, pH, and fertility should be noted or measured close to sampling for PLFA analysis for a more in depth interpretation of results.

Reviewed By : Willie Pretorius	10/5/2023	Copy:1	Page 2 of 2
Bus: 308-234-2418	web site	,	re., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Account No. : 93997

Protozoa

Undifferentiated

Biological Soil Analysis Report

1410301	Invoice No. :		OMY LLC	SOIL & UP AGRON
09/05/2023	Date Received :			PO BOX 616
09/07/2023	Date Reported :	50571	IA	ALGORA
54994	Lab No. :			

Results For : LUCHAS FARM/GETTING FARMS LTD Sample ID 1: 3 Sample ID 2 :

PLFA Soil Microbial Community Analysis

Functional Group Biomass & Diversity

Total Living Microbial Biomas Functional Group Diversity Ir		atty Acid (PLF	A) ng/g	5055.8 1.5
Functional Group Diversity in				1.5
	Total Biomass	Diversity	Rating	
	< 500	< 1.0	Very Poor	
	500+ - 1000	1.0+ - 1.1	Poor	
	1000+ - 1500	1.1+ - 1.2	Slightly Below Average	
	1500+ - 2500	1.2+ - 1.3	Average	
	2500+ - 3000	1.3+ - 1.4	Slightly Above Average	
	3000+ - 3500	1.4+ - 1.5	Good	
	3500+ - 4000	1.5+ - 1.6	Very Good	
	> 4000	> 1.6	Excellent	
Functional Group			Biomass, PLFA ng/g	% of Total Biomass
Total Bacteria			2526.76	49.98
Gram (+)			1488.17	29.43
Actinomycetes			553.17	10.94
Gram (-)			1038.60	20.54
Rhizobia			11.97	0.24
Total Fungi			930.42	18.40
Arbuscular Mycorrhizal			228.81	4.53
Saprophytes			701.61	13.88

Reviewed By : Willie Pretorius	10/5/2023	Copy:1
Bus: 308-234-2418	web site	4007 Che
Fax: 308-234-1940	www.wardlab.com	Kearney,

0.27

31.35

Page 1 of 2

5055.83

1.55

13.41

1585.24

Community Composition Ratios

Fungi:Bacteria

0.3682

Bacteria tend to dominate in systems with fewer organic inputs or residues possibly leading to a lower C:N ratio. In addition, bacteria can be more prominent in the early spring or late fall as soil temperatures are usually cooler and vegetation is less active or absent. Dry conditions, slightly alkaline to alkaline pH values, or increased land disturbance through prolonged and extensive tillage, grazing, or compaction may also favor bacteria. While bacteria are important and needed in the soil ecosystem, fungi are desired and more often considered indicators of good soil health. Increased use of cover crops and/or other organic inputs and less soil disturbance should help the soil support more fungi. Adjustments to pH may also be recommended in some more extreme circumstances.

Predator:Prey

0.0053

This ratio is also expressed as protozoa to bacteria. Protozoa feed on bacteria which helps release nutrients, especially nitrogen. A higher ratio indicates an active community where base level nutrients are sufficient to support higher trophic levels or predators. However, this ratio will always be a relatively low number because the prey will greatly outnumber the predators.

Gram (+):Gram (-)

1.4329

Gram (+) bacteria typically dominate early in the growing season and/or following a fallow period. They also survive better under certain environmental conditions or stressors such as drought or extreme temperatures due to their ability to form spores. Therefore, it is common to see higher values when the community is coming out of dormancy or is stressed. These values will typically begin to approach those of a more balanced bacterial community as the soil conditions become more favorable throughout the growing season. A gram (-) dominated soil may be due to anaerobic conditions or other stressors such as pesticide application or heavy metal contamination.

Rating
Very Poor
Poor
Slightly Below Average
Average
Slightly Above Average
Good
Very Good
Excellent

Lab No.: 54,994

Scale		Rating
< 0.002		Very Poor
0.002+ - 0.00)5	Poor
0.005+ - 0.00)8	Slightly Below Average
0.008+ - 0.01		Average
0.01+ - 0.01	3	Slightly Above Average
0.013+ - 0.01	6	Good
0.016+ - 0.02	2	Very Good
> 0.02		Excellent
Scale	Ratin	g
< 0.5	Gram	(-) Dominated
0.5+ - 1.0	Slight	ly Gram (-) Dominated
1.0+ - 2.0	Balan	ced Bacterial Community
2.0+ - 3.0	Slight	ly Gram(+) Dominated
3.0+ - 4.0	Gram	(+) Dominated
> 4.0	Very	Gram(+) Dominated

Stress and Community Activity Ratios

	,	
Sat:Unsat	1.3656	Bacteria alter their membranes under various environmental conditions in order to maintain optimal fluidity for nutrient and waste transport into and out of the cell. Saturated fatty acids may reflect a better adapted community to current environmental conditions. Communities under stressed conditions will increase their proportion of unsaturated fatty acids. This will likely occur most often as a result of low soil moisture or drastic changes in temperature. In general, a higher number indicates a healthier and more stable community.
Mono:Poly	5.3407	The ratio of monounsaturated to polyunsaturated fatty acids is used along with the sat:unsat ratio to further indicate the degree of community stress. A higher ratio indicates less stress, while a lower ratio would depict higher levels of prolonged stress due to conditions such as temperature, moisture, pH, or nutrient availability (starvation).
Pre 16:1ω7c:cy17:0	2.4586	Cyclo (cy) fatty acids are more prominent during stationary phases of growth or under high stress conditions
Pre 18:1ω7c:cy19:0	1.8308	that influence membrane fluidity and growth rates such as temperature, pH, moisture, and nutrient availability. In general, a higher number or all Pre16/Pre18 is better and indicates an actively growing community experiencing fewer stressors. These values are typically higher early in the growing season (planting) when the community is becoming active and experiencing fast growth. The values may begin to drop towards the end of the growing season (harvest) following a decrease in plant growth activity or as the community approaches a stationary growth phase as the temperature/moisture changes between the seasons.

All ratios should be looked at separately, but should also be taken into context and compared with one another to better understand the big picture. These are general guidelines and statements regarding soil microbial communities. In addition, the scales and ranges presented here are specific for the type of extraction and analytical methods used for PLFA analysis at Ward Laboratories, Inc. They will not necessarily reflect ranges derived from other methods of analysis or the literature. The scales can and should be adjusted slightly depending on the time of year and conditions at sampling along with the climate and soil type of specific regions where comparisons are being made. Conditions such as time of year, past and present crop, moisture, pH, and fertility should be noted or measured close to sampling for PLFA analysis for a more in depth interpretation of results.

Reviewed By : Willie Pretorius	10/5/2023	Copy:1	Page 2 of 2
Bus: 308-234-2418	web site	,	re., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Account No.: 93997

Biological Soil Analysis Report

1410301	Invoice No. :		OMY LLC	SOIL & UP AGRON
09/05/2023	Date Received :			PO BOX 616
09/07/2023	Date Reported :	50571	IA 50571	ALGORA
54995	Lab No. :			

Results For : LUCHAS FARM/GETTING FARMS LTD Sample ID 1 : 4 Sample ID 2 :

PLFA Soil Microbial Community Analysis

Functional Group Biomass & Diversity

Total Living Microbial Biomas Functional Group Diversity In		atty Acid (PLF	A) ng/g	6732.11 1.491
	Total Biomass	Diversity	Rating	
	< 500	< 1.0	Very Poor	
	500+ - 1000	1.0+ - 1.1	Poor	
	1000+ - 1500	1.1+ - 1.2	Slightly Below Average	
	1500+ - 2500	1.2+ - 1.3	Average	
	2500+ - 3000	1.3+ - 1.4	Slightly Above Average	
	3000+ - 3500	1.4+ - 1.5	Good	
	3500+ - 4000	1.5+ - 1.6	Very Good	
	> 4000	> 1.6	Excellent	
Functional Group			Biomass, PLFA ng/g	% of Total Biomass
Total Bacteria			3894.59	57.85
Gram (+)			2881.73	42.81
Actinomycetes			1513.30	22.48
Gram (-)			1012.86	15.05
Rhizobia			0.00	0.00
Total Fungi			961.82	14.29
Arbuscular Mycorrhizal			238.77	3.55
Saprophytes			723.05	10.74
Protozoa			10.77	0.16
Undifferentiated			1864.95	27.70

Reviewed By : Willie Pretorius	10/5/2023	Сору : 1	Page 1 of 2
Bus: 308-234-2418	web site	,	ve., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Community Composition Ratios

Fungi:Bacteria

0.2470

Bacteria tend to dominate in systems with fewer organic inputs or residues possibly leading to a lower C:N ratio. In addition, bacteria can be more prominent in the early spring or late fall as soil temperatures are usually cooler and vegetation is less active or absent. Dry conditions, slightly alkaline to alkaline pH values, or increased land disturbance through prolonged and extensive tillage, grazing, or compaction may also favor bacteria. While bacteria are important and needed in the soil ecosystem, fungi are desired and more often considered indicators of good soil health. Increased use of cover crops and/or other organic inputs and less soil disturbance should help the soil support more fungi. Adjustments to pH may also be recommended in some more extreme circumstances.

Predator:Prey

0.0028

This ratio is also expressed as protozoa to bacteria. Protozoa feed on bacteria which helps release nutrients, especially nitrogen. A higher ratio indicates an active community where base level nutrients are sufficient to support higher trophic levels or predators. However, this ratio will always be a relatively low number because the prey will greatly outnumber the predators.

Gram (+):Gram (-)

2.8452

Gram (+) bacteria typically dominate early in the growing season and/or following a fallow period. They also survive better under certain environmental conditions or stressors such as drought or extreme temperatures due to their ability to form spores. Therefore, it is common to see higher values when the community is coming out of dormancy or is stressed. These values will typically begin to approach those of a more balanced bacterial community as the soil conditions become more favorable throughout the growing season. A gram (-) dominated soil may be due to anaerobic conditions or other stressors such as pesticide application or heavy metal contamination.

Scale	Rating		
< 0.05	Very Poor		
0.05+ - 0.1	Poor		
0.1+ - 0.15	Slightly Below Average		
0.15+ - 0.2	Average		
0.2+ - 0.25	Slightly Above Average		
0.25+ - 0.3	Good		
0.3+ - 0.35	Very Good		
> 0.35	Excellent		

Scale		Rating	
< 0.002		Very Poor	
0.002+ - 0.005		Poor	
0.005+ - 0.008		Slightly Below Average	
0.008+ - 0.01		Average	
0.01+ - 0.013		Slightly Above Average	
0.013+ - 0.016		Good	
0.016+ - 0.02	2	Very Good	
> 0.02		Excellent	
Scale	Ratin	g	
< 0.5	Gram (-) Dominated		
0.5+ - 1.0 Slight		Slightly Gram (-) Dominated	
1.0+ - 2.0	Balan	ced Bacterial Community	
2.0+ - 3.0	Slightly Gram(+) Dominated		
3.0+ - 4.0	Gram(+) Dominated		
> 4.0	Very	Gram(+) Dominated	

Stress and Community Activity Ratios

	,	
Sat:Unsat	2.0813	Bacteria alter their membranes under various environmental conditions in order to maintain optimal fluidity for nutrient and waste transport into and out of the cell. Saturated fatty acids may reflect a better adapted community to current environmental conditions. Communities under stressed conditions will increase their proportion of unsaturated fatty acids. This will likely occur most often as a result of low soil moisture or drastic changes in temperature. In general, a higher number indicates a healthier and more stable community.
Mono:Poly	7.5968	The ratio of monounsaturated to polyunsaturated fatty acids is used along with the sat:unsat ratio to further indicate the degree of community stress. A higher ratio indicates less stress, while a lower ratio would depict higher levels of prolonged stress due to conditions such as temperature, moisture, pH, or nutrient availability (starvation).
Pre 16:1ω7c:cy17:0	2.3763	Cyclo (cy) fatty acids are more prominent during stationary phases of growth or under high stress conditions
Pre 18:1ω7c:cy19:0	0.9381	that influence membrane fluidity and growth rates such as temperature, pH, moisture, and nutrient availability. In general, a higher number or all Pre16/Pre18 is better and indicates an actively growing community experiencing fewer stressors. These values are typically higher early in the growing season (planting) when the community is becoming active and experiencing fast growth. The values may begin to drop towards the end of the growing season (harvest) following a decrease in plant growth activity or as the community approaches a stationary growth phase as the temperature/moisture changes between the seasons.

All ratios should be looked at separately, but should also be taken into context and compared with one another to better understand the big picture. These are general guidelines and statements regarding soil microbial communities. In addition, the scales and ranges presented here are specific for the type of extraction and analytical methods used for PLFA analysis at Ward Laboratories, Inc. They will not necessarily reflect ranges derived from other methods of analysis or the literature. The scales can and should be adjusted slightly depending on the time of year and conditions at sampling along with the climate and soil type of specific regions where comparisons are being made. Conditions such as time of year, past and present crop, moisture, pH, and fertility should be noted or measured close to sampling for PLFA analysis for a more in depth interpretation of results.

Reviewed By : Willie Pretorius	10/5/2023	Copy:1	Page 2 of 2
Bus: 308-234-2418	web site	,	re., P.O. Box 788
Fax: 308-234-1940	www.wardlab.com		aska 68848-0788

Lab No.: 54,995