3 Production steps

Juan C. Cabrera
Field Specialist in Horticulture
Email: jcabrera-garcia@missouri.edu
Phone: (573)-686-8064
Topics

1. Plant production timelines: lettuce and tomatoes
2. Seedling production
3. Making nutrient solutions
4. Hydroponic crop production Leafy greens and vine crops
 • Taking care of lettuce crops
 • Taking care of tomato crops
5. Monitoring nutrient solutions and pests
Hydroponic lettuce production timeline

- Place seeds on propagation trays
- Place seedlings in the hydroponic system
- Constantly monitor pH, EC, and DO
- Adjust pH when needed
- Constantly monitor for insect and diseases
- Harvest
Hydroponic tomato production timeline

- Place seeds on propagation trays
- Transplant
- Use stage 1 nutrient solution
 - Weeks 0 to 6
- 2 true leaves
- 1st flower cluster
- Use stage 2 nutrient solution
 - Weeks 6 to 12
- Prune lower leaves as needed
- Constantly monitor pH and EC
- Harvest ripe fruit as needed
 - Beyond week 12
 - Use stage 3 nutrient solution
 - Fruit ripening
Topics

1. Plant production timelines: lettuce and tomatoes
2. Seedling production
3. Making nutrient solutions
4. Hydroponic crop production Leafy greens and vine crops
 • Taking care of lettuce crops
 • Taking care of tomato crops
5. Monitoring nutrient solutions and pests
Media for seedling production

- Rockwool
- Compressed peat or coconut coir pellets
- Synthetic materials
Seedling production

1. Saturate the media with water (no fertilizers)
2. Place the seeds on the media
3. Cover the seeds for 24-48 hours (or place in a dark room)
4. Remove the cover and place seeds under light and keep them moist using a 75 ppm N nutrient solution
5. Seedlings will be ready when the first pair of true leaves are **fully expanded**
6. Place the seedling in the system on the net pots
Seedling production

Photo by Dr. Rosa Raudales-UConn
Seedling production in the Netherlands

Foto por Dr. Rosa Raudales-UConn
System prep before transplant

• Clean debris from previous crop
• Inspect system for leaks and broken parts
• Make sure you have all meters and materials in stock
 • Fertilizers
 • Acid and base (adjust pH)
 • Conductivity and pH meters (with calibrating solutions)
 • Air pumps with air diffusers (DWC system)
• Mix fertilizer with water then adjust pH
Topics

1. Plant production timelines: lettuce and tomatoes
2. Seedling production
3. Making nutrient solutions
4. Hydroponic crop production Leafy greens and vine crops
 • Taking care of lettuce crops
 • Taking care of tomato crops
5. Monitoring nutrient solutions and pests
Lettuce

- For every 10 gallons add
 - 1.34 oz (40 grams) of 5-12-26 fertilizer
 - 0.87 oz (25 grams) of 15.5-0-0 fertilizer
- Dilute the fertilizers separately each in 5 gallons then combine the dissolved fertilizers
- Measure pH and EC
- Adjust the pH between 5.5 to 6.0

<table>
<thead>
<tr>
<th>Element</th>
<th>Required ppm</th>
<th>Provided by fertilizers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total N</td>
<td>150</td>
<td>150.75</td>
</tr>
<tr>
<td>P</td>
<td>31</td>
<td>110</td>
</tr>
<tr>
<td>K</td>
<td>210</td>
<td>260</td>
</tr>
<tr>
<td>Ca</td>
<td>90</td>
<td>123.5</td>
</tr>
<tr>
<td>Mg</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>0.16</td>
<td>0.5</td>
</tr>
<tr>
<td>Cu</td>
<td>0.02</td>
<td>0.15</td>
</tr>
<tr>
<td>Fe</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Mn</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Mo</td>
<td>0.02</td>
<td>0.1</td>
</tr>
<tr>
<td>Zn</td>
<td>0.13</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Tomato Stage 1

- Use until you see the first cluster of flowers (approx. 6 weeks)
- For every 10 gallons add:
 - 0.8 oz (23 grams) of 5-12-26
 - 1 oz (29 grams) of 15.5-0-0
 - 0.4 oz (11 grams) of Epsom salts
- Dilute fertilizers separately
- Measure pH and EC
- Adjust pH

<table>
<thead>
<tr>
<th>Element</th>
<th>Required ppm</th>
<th>Provided by fertilizers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total N</td>
<td>145</td>
<td>150</td>
</tr>
<tr>
<td>P</td>
<td>47</td>
<td>72</td>
</tr>
<tr>
<td>K</td>
<td>145</td>
<td>156</td>
</tr>
<tr>
<td>Ca</td>
<td>144</td>
<td>147</td>
</tr>
<tr>
<td>Mg</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>S</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>0.4</td>
<td>0.30</td>
</tr>
<tr>
<td>Cu</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>Fe</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mn</td>
<td>0.55</td>
<td>0.30</td>
</tr>
<tr>
<td>Mo</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>Zn</td>
<td>0.33</td>
<td>0.09</td>
</tr>
<tr>
<td>K:N ratio</td>
<td>1.0</td>
<td>1.04</td>
</tr>
</tbody>
</table>
Tomato Stage 2

- Use until you see the fourth cluster of flowers (weeks 6 to 12)
- For every 10 gallons add:
 - 1.5 oz (43 grams) of 5-12-26
 - 1.2 oz (34 grams) of 15.5-0-0
- Dilute fertilizers separately
- Measure pH and EC
- Adjust pH

<table>
<thead>
<tr>
<th>Element</th>
<th>Required ppm</th>
<th>Provided by fertilizers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total N</td>
<td>195</td>
<td>195</td>
</tr>
<tr>
<td>P</td>
<td>47</td>
<td>137</td>
</tr>
<tr>
<td>K</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Ca</td>
<td>160</td>
<td>168</td>
</tr>
<tr>
<td>Mg</td>
<td>60</td>
<td>69</td>
</tr>
<tr>
<td>S</td>
<td>10</td>
<td>98</td>
</tr>
<tr>
<td>B</td>
<td>0.4</td>
<td>0.58</td>
</tr>
<tr>
<td>Cu</td>
<td>0.05</td>
<td>0.17</td>
</tr>
<tr>
<td>Fe</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td>Mn</td>
<td>0.55</td>
<td>0.58</td>
</tr>
<tr>
<td>Mo</td>
<td>0.05</td>
<td>0.22</td>
</tr>
<tr>
<td>Zn</td>
<td>0.33</td>
<td>0.17</td>
</tr>
<tr>
<td>K:N ratio</td>
<td>1.54</td>
<td>1.54</td>
</tr>
</tbody>
</table>
Tomato Stage 3

- Use when you see the fruits ripening (plants older than 12 weeks)
- For every 10 gallons add:
 - 2 oz (57 grams) of 5-12-26
 - 1.4 oz (39 grams) of 15.5-0-0
- Dilute fertilizers separately
- Measure pH and EC
- Adjust pH

<table>
<thead>
<tr>
<th>Element</th>
<th>Required ppm</th>
<th>Provided by fertilizers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total N</td>
<td>205</td>
<td>240</td>
</tr>
<tr>
<td>P</td>
<td>47</td>
<td>186</td>
</tr>
<tr>
<td>K</td>
<td>350</td>
<td>403</td>
</tr>
<tr>
<td>Ca</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Mg</td>
<td>60</td>
<td>93</td>
</tr>
<tr>
<td>S</td>
<td>10</td>
<td>132</td>
</tr>
<tr>
<td>B</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Cu</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>Fe</td>
<td>2</td>
<td>4.7</td>
</tr>
<tr>
<td>Mn</td>
<td>0.55</td>
<td>0.8</td>
</tr>
<tr>
<td>Mo</td>
<td>0.05</td>
<td>0.3</td>
</tr>
<tr>
<td>Zn</td>
<td>0.33</td>
<td>0.2</td>
</tr>
<tr>
<td>K:N ratio</td>
<td>1.7</td>
<td>1.68</td>
</tr>
</tbody>
</table>
Topics

1. Plant production timelines: lettuce and tomatoes
2. Seedling production
3. Making nutrient solutions
4. Hydroponic crop production Leafy greens and vine crops
 • Taking care of lettuce crops
 • Taking care of tomato crops
5. Monitoring nutrient solutions and pests
Hydroponic lettuce production timeline

- Place seeds on propagation trays
- Cover the seeds or place in the dark
- Place seedlings in the hydroponic system
- Constantly monitor pH, EC, and DO
- Adjust pH when needed
- Constantly monitor for insect and diseases
- Harvest
Systems adequate for leafy greens

Floating raft/Deep water culture (DWC)

- Air pump
- Diffusor
- Floating raft
- Nutrient solution

NFT

- Submergible pump

Aeroponic

- Sprinkler/fogging nozzle
Taking care of lettuce plants

• Place sticky traps near vents, doors, and at the canopy level of the crops to scout for insects

• Scout for insect damage, diseases, yellowing or abnormal growth

• Measure pH, EC, and DO (DWC systems) every two days. Adjust pH when necessary

• Use summer heat resistant varieties in the summer

• Top off with fresh nutrient solution when needed

• Replace nutrient solution after 3 crop cycles
Hydroponic tomato production timeline

- **Weeks 0 to 6**: Use stage 1 nutrient solution
 - Place seeds on propagation trays
 - Transplant
 - Prune lower leaves as needed

- **Weeks 6 to 12**: Use stage 2 nutrient solution
 - Constantly monitor pH and EC

- **Beyond week 12**: Use stage 3 nutrient solution
 - Harvest ripe fruit as needed

- **Events**:
 - 0: First true leaves
 - 1st flower cluster
 - Harvest ripening

*Extension
University of Missouri*
Systems adequate for vine crops

- **Growing media** (potting mix, coir, perlite, etc.)
- **Dripper**
- **Ebb and flow**
- **Dutch or Bato bucket**
- **Submersible pump**
- **Nutrient solution**
- **Fiber mat**
- **Mat**
Taking care of tomato plants

• Place sticky traps near vents, doors, and at the canopy level of the crops to monitor for insects
• Measure pH and EC every two days and adjust pH when necessary
• Walk through and observe the plants for insect damage, diseases, yellowing or abnormal growth
• Prune lower leaves and adjust plant on the trellis
• Tomatoes need pollination!
• Replace nutrient solutions when needed
Pollinating tomatoes

• There are no pollinators inside a greenhouse or a vertical farms
• Pollination is needed to increase yield and fruit size
• You can order a box of bumblebees that will last for 12 weeks, and it is good for 1,400 to 5,700 sq ft (too many can damage flowers)
• Tap the trellis wire twice a day at least 3 days a week
• Use electric air blowers every day for 5 seconds
Trellis system
Pruning

Improved air circulation = Less disease pressure

Makes it easy to train the tomato plants
Remove any suckers

Remove lower leaves no longer needed for production: all leaves under the first fruit cluster
Topics

1. Plant production timelines: lettuce and tomatoes
2. Seedling production
3. Making nutrient solutions
4. Hydroponic crop production Leafy greens and vine crops
 • Taking care of lettuce crops
 • Taking care of tomato crops
5. Monitoring nutrient solutions and pests
Measuring pH and EC
Cheap meters can take wrong readings that can result in costly mistakes.
A meter is as precise as the last time it was calibrated.
Needed meters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NFT & Dutch Bucket</th>
<th>DWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Electric conductivity (EC)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Temperature</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Dissolved oxygen (DO)</td>
<td>☠️</td>
<td>✔</td>
</tr>
</tbody>
</table>

Combo meters
Monitoring for pests

• Use sticky traps to scout for insects
 • At plant height
 • Yellow: fungus gnats, aphids, thrips, whiteflies, and leaf miners
 • Blue: whiteflies
 • One trap per 1,000 square feet
 • Additional traps as needed near vents and doors
 • Always inspect the plants

• Identify the pests and the damage they cause (some transmit plant diseases)
Sticky traps
Insect pests

• Indoor/greenhouse: thrips, aphids, whiteflies, fungus gnat, and shoreflies

• Cultural control: resistant varieties, prevention measures, insecticidal soaps, horticultural oils, neem oil.

• Chemical control: Read the label! The label is the law!

• Biological control: predatory insects and beneficial fungi
Horticulture Specialists

- **Justin Keay** – Justin.keay@missouri.edu
- **Debi Kelly** – kellyd@missouri.edu
- **Kate Kammler** – kammlerk@missouri.edu
- **Donna Aufdenberg** – aufdenbergd@missouri.edu
- **Juan Cabrera-Garcia** – jcabrera-garcia@missouri.edu
- **Patrick Byers** – byerspl@Missouri.edu
- **Kelly McGowan** – mcgowank@Missouri.edu
- **Robert Balek** – balekr@Missouri.edu
- **Ramon Arancibia** – ramon.arancibia@Missouri.edu
- **Tamra Reall** – reallt@Missouri.edu
- **Cory Creed** – creedca@Missouri.edu
- **Kathi Mecham** – mechamk@Missouri.edu
- **Tom Fowler** – fowlert@Missouri.edu
- **Jennifer Schutter** – schutterjl@Missouri.edu

Extension

University of Missouri

College of Agriculture, Food & Natural Resources

University of Missouri