

Agenda

1. Concepts and Definitions

- 1. Thinking like a Watershed
- 2. What is Rehydration?
- 3. Biodiversity Conservation
- 4. Broadscale Permaculture

2. Design Principles

- 1. Keyline design
- 2. Restoration Agriculture
- 3. Oak Savanna Biomimicry

Field Trip

3. Rehydration System Metrics

- 1. Design Details
- 2. Dimensions

4. Western SARE Farmer/Rancher Project

- 1. Objectives
- 2. Results

Historical Human Water Diversion

Sumerians

Capturing Water and Sediment

Anasazi

Rio Grande and Little Colorado

2,200 BP to 700 BP

Northern Colombia

transformations in America

A system of surface water diversion developed to slow, spread and sink the water to capture sediments, catch fish and increase plant growth.

https://www.youtube.com/watch?v=ylg33zx1CvI&ab_channel=MuseodelOroColombia

What is Rehydration?

The diversion of stormwater or runoff away from its natural path to achieve a certain goal:

- Aquifer recharge
- Habitat restoration
- Flood control
- Prolong late season stream flows
- Sediment Capture
- Passively irrigate perennial-agricultural

Historical map showing the extent of the Morro Bay salt marsh (MBSM) in 1897 CE (United States Geological Survey, 1903).

Google Maps imagery of the MBSM region from 2017 CE, showing expanded salt marsh extent since 1897 CE.

Why is Biodiversity Important?

In California, at least 300 terrestrial vertebrate species (Block, Morrison, and Verner 1990), 1,100 native vascular plant species (CalFlora Database 1998), 370 fungal species and an estimated 5,000 arthropod species (Swiecki et al. 1997a) are associated with California oak woodlands.

Endangered Species

California Plant Diversity

Mapping Plant Biodiversity Hotspots at the county scale

Special Status Plant Collections:

Hoover Herbarium (OBI) Cal Poly 177 Species – 1599 Digitized

Fig. 6. Relative abundance of dominant and ecologically or historically important pollen taxa in Chorro marsh core **Morro-02**, shown with approximate ages inferred from pollen and lead (Pb) that were used in the corresponding age-depth model in Fig. 2, and with sediment accumulation rate in years per centimeter. The percentage of arboreal taxa in the total pollen and spore count is also shown. Though "non-native" pollen types as shown here include only Erodium cf. cicutarium and Eucalyptus, some members of the Asteraceae and Poaceae families included in these data are likely also nonnative. Dashed black lines delineate the CONISSdesignated clusters shown on the right, and the red dashed line shows the approximate timing of Spanish settlement and the establishment of the Mission San Luis Obispo de Tolosa. Data were analyzed and plotted using the R packages Rioja (v.0.9–26; Juggins, 2017) and Vegan (v.2.5–7; Oksanen et al., 2007). The abbreviation "TC" includes taxa in the Taxaceae and Cupressaceae families (Adam et al., 1981).

1/3 of all food in the U.S. is wasted and goes to a landfill.

Food For Thought

Imagine if we replaced that 1/3 with wildlife habitat

Permaculture

Geoff Lawton

"Permaculture is a design system for ecological and sustainable living, integrating plants, animals, people, buildings, and communities.

There is nothing wrong with having several definitions, as long as you understand the core principles, the ethics, and the applications of permaculture."

Broad Scale - Permaculture

Redesigning Agriculture in Nature's Image

Keyline Water Management

Percival Yeomans

Ken Yeomans

Mark Shepard

Andless of Resonances Agreembers

Mark Slopand

Feerword by Jack Spirks

Matheads

ater for any

1965

The Keyline Plow

Keyline Design Steps:

1. Land Shape

The human hand is an excellent tool for demonstrating the vocabulary describing land forms.

The line between your index finger knuckle and your pinky finger knuckle is the "main ridge" of your handscape.

Descending from each hill on the main ridge are "primary ridges."

Descending from each saddle is a "primary valley." Water from the hills and saddles above, as well as from the sides of adjacent primary valleys migrates down into the primary valleys.

The keypoints of each primary valley are usually at different elevations from one another. Knowing how this landform geometry works is what will allow us to easily design gravity-flow irrigation and livestock watering systems on the land.

A Keyline is the contour line of a valley that is centered at the keypoint and goes along the sides of the valley only until the valley walls turn outward. This is the first reference line in Keyline Design.

Two primary ridge forms coming together create a "main valley" at the bottom. Water from each hand migrates toward the main valley.

Traveling upwards from the main valley, the upper terminus of a primary valley (the point where the space between your fingers becomes the fleshy web of skin) is the "keypoint" of that primary valley.

Ideally no more than 10% for keyline projects Table 1 – RUNOFF FROM CATCHMENTS¹

3. Runoff

Off the Contour #10 – A Modern Approach

to Keyline Design for your Property Part I

Traceland Rehydration System

Average Annual Rainfall	Total Annual Evaporation	Clay Pans, Inelastic Clay or Shale		
18-30 in	50 to 70 in	7.5 – 12.5 %		

			Runoff as a % of average annual rainfall (Y)				
Average annual rainfall (R) (mm)	Total annual evaporation (mm)	Reliability (years out of 10)	Shallow sand or loam soils (%)	Sandy clays (%)	Elastic clays (%)	Clay pans, inelastic clays or shales (%)	
> 1100		8	10 to 15	10 to 15	15 to 20	15 to 25	
		9	6.5 to 10	6.5 to 10	10 to 13	10 to 16.5	
901 to 1100		8	10 to 12.5	10 to 15	12.5 to 20	15 to 20	
		9	6.5 to 8	6.5 to 10	8 to 13	10 to 13	
501 to 900	less than 1300	8	7.5 to 10	7.5 to 15	7.5 to 15	10 to 15	
		9	5 to 6.5	5 to 10	5 to 10	6.5 to 10	
	1300 to 1800	8	5 to 7.5	5 to 12.5	5 to 10	10 to 15	
		9	3 to 5	3 to 8	3 to 6.5	6.5 to 10	
401 to 500	1300 to 1800	8	2.5 to 5	5 to 10	2.5 to 5 7	7.5 to 12.5	

https://www.slocounty.ca.gov/Departments/Public-Works/Forms-Documents/Water-Resources/Groundwater-Reports/2002-Hydrologic-Report.pdf

Restoration Agriculture

COAST LIVE OAK SAVANNA

Interesting Edible Genera:

PLANT SPECIES LIST

Common Name	Scientific Name	Code
Coast Live Oak	Quercus agrifolia	CLO
Golden Chinquapin	Chrysolepis chrysophylla	CC
Black Walnut	Juglans hindsii	BW
Salal	Gaultheria shallon	SA
Huckleberry	Vaccinium ovatum	HB
Currant	Ribes speciosum	CU
Blue Elderberry	Sambucus cerulea	EB
California Wild Grape	Vitis californica	CG
Service Berry	Amelanchier utahensis	SB

Native Food and Pollinator Hedgerow

Rehydrating Toro Creek with Sustainable Agriculture: Traceland Farm Demonstration Project

Project Objectives:

Objective 1: Water management accounting

Objective 2: Expand Ag to Flats, Restore Habitat, Earthworks

Objective 3: Reduce erosion and arrest stream bank collapse

Objective 4: Capture 500k gal of storm water runoff

Objective 5: Bio-sequester CO2 from planting 143 trees

Objective 6: Research and Develop Acorn food production

Objective 1: Water management accounting

Avocados, subtropicals & road water -8.41 + Homestead & gardens -1.21 + Flowers & -.55 + Restoration rowcrops -.55 + Restoration plantings -.25 + Recharge plantings -.25 + Homestead af

Water Consumption

Zone	Description	Trees / Plants	Emitter Type	Hours per Week	Total Weekly (in gallons)	Annual Total (9 mo)	Acre Feet
Avocados	8.5 acre Hass Avocado Orchard w. some pollinator Etinger / Zutano	850	12 gal sprinklers and 2 gal emitters	6	68000.00	2631600.00	8.10
Sapotes	1 acre Vernon Sapotes	71	2 gal (x2) drippers	6	710.00	27477.00	0.08
Coffee	3 rows of arabica coffee in upper avocados	48	7 gal sprinklers	1	336.00	13003.20	0.04
Passion Fruit and Limes	Trellised Fredricks Passionfruit, Assorted Exotic Lime and Passiflora	19	2 gal (x2) drippers	6	76.00	2941.20	0.01
Nursery	Oak, Walnut and Assorted Drought Tolerant Fruit Trees	100s of seedlings	Hose	1	25.00	967.50	0.00
Home Orchard	Assorted Citrus, Pomme and Stone Fruit Trees	50	10 gal sprinklers on	1.5	750.00	29025.00	0.09
Homestead	California avg. annual consumption	n/a	n/a	n/a	n/a	n/a	1.00
Home Gardens	Herbs, flowers and vegetables, landscape	50 plants	Emitters and Sprinklers	2	1000.00	38700.00	0.12
Flowers	Ranunculus, Dhalias, Marigolds	2,000 linear ft	1g x 1ft	3	3000.00	116100.00	0.36
Asparagus	Purple and Green	800 linear ft	1g x 1ft	2	1600.00	61920.00	0.19
Road Water	Dust Abatement	18 Nozzles	3 gal per minute	24min	1500.00	58050.00	0.18
Restoration Plantings (Remove water after 3 years)	Riparian Buffers and hedgerows	400	2 gal emitters and 12 gal sprinklers	n/a	2100.00	81270.00	0.25
						3061053.90	10.42

Objective 2: Expand Ag to Flats, Restore Habitat, Earthworks

Biological Baseline

Objective 3: Reduce Erosion and Arrest Stream Bank Collapse

Objective 4: Capture 500k gal of Stormwater

325,000 gal = 1 acre foot 27,030 gal = 1 acre inch Rehydration System Dimensions

RUN-OFF CALC

42 acres x **18**" = annual average **precipitation: Total:** 20,475,000 gal

10% run off rate (Table 1 from Run-off Catchments Regrarians)

2,475,000 gallons of runoff annually in a typical year of precipitation **SEDIMENT BASINS**

12 basins

50' x 30' x 2' = 3,000 ft³ x 7.5g = 20,000 gal x 12 basins = 240,000 gal

1 Redwood Basin 100' x 40' x 2.5' = 10,000 ft³ x 7.5g = 75,000g

1 Flower Basin 100' x 30' x 2' = 6,000 ft³ x 7.5g = 40,000 gal **BERMS + SWALES**

9 B+S

3000' total x 8ft² = 24,000ft³ x 7.5g = 180,000 gal

<mark>21 acres</mark> to

<mark>42 acres</mark>

Sediment Basins 50,000 ft² of infiltration surface

> Nearby Perc Test: 1" of perc in 80 min

Infiltration

50,000ft² x .082 (1 inch) = 4,100 ft³ x 7.5 gal =30,750gal per 80 min

From Field Observation:

The basin water surface is lowering roughly 1" per day

24hrs x 60min / into 80 minutes 80 minutes is 5-6 % of 24hrs

5-6% of rate perc test

Objective 5: Bio-sequester CO2 Planting 143 trees

CUFR TREE CARBON CALCULATOR

Carbon Accounting

1 Gallon of Diesel = 22lbsCO2 or 10 kilos CO2

2 Bulldozers/ Excavators / Paddle Scraper / Box Scraper at aprox 400 gallons per day x 18 days of earthworks = 7,200 gallons x 22lbs =

158,400 lbs of CO2 or 72,000 kilos CO2

Mature 80-year-old Native = 22,674.6 Kg CO2 Foreign = 13,548 Kg CO2

1 oak tree stores 1 ton after 20 years

Minimum of 72, 20-yearold Oaks: Native, Native adjacent, Foreign

CUFR Tree Carbon Calculator

Developed by the Center for Urban Forest Research Pacific Southwest Research Station US Forest Service

In partnership with the California Department of Forestry and Fire Protection

20 year Timeline

Total CO₂

Stored

Above

ground

biomass

(dry weight) (kg/tree)

482.0

(lb/tree)

1,062.7

	Tree and Building Data entry						
	Enter Tree data bel	ow one tree at a					
Data name Data entry				Units	Description		
Species code and scientific name		scientific name	QUAG (Quercus agrifolia)		coast live oak		
		Age (years)	20	Age (years)	12.3 in DBH & 31.6 ft high		

oak	(kg/tree)
H & 31.6 ft high	1134.0
	(lb/tree)
	2,500.1

Roughly 1 ton per Tree

Tree and Building Data entry					
Enter Tree data bel	ow one tree at a	time, then record results			
	Data name	Data entry	Units	Description	
Species code and	l scientific name Age (years)	QUIL2 (Quercus ilex) 20	Age (years)	roble negro 13.3 in DBH & 33.1 ft high	

Total CO ₂ Stored	Above ground biomass
	(dry weight)
(kg/tree)	(kg/tree)
998.6	424.5
(lb/tree)	(lb/tree)
2,201.6	935.8

References

CARBON FARMING SOLUTION

A Block Took of Perennal Crops and Regenerative Agriculture Profiles for Climate Change Miligation and Food Security

ERIC TOENSMEIER Prevent by Dr. Hara Herren

Text on it ait by Linny Communities

Extras

Before & After 2" rain 3/24/24

CUFR Tree Carbon Calculator

Developed by the Center for Urban Forest Research Pacific Southwest Research Station **US Forest Service**

In partnership with the California Department of Forestry and Fire Protection

80 year Timeline

Т

		Tree and Building	Data entry		Total CO ₂ Stored	Above ground biomass
Enter Tree data bel	ow one tree at a	time, then record results				
	Data name	Data entry	Units	Description		(1
					(kg/tree)	(dry weight) (kg/tree)
Species code and	scientific name	QUAG (Quercus agrifolia)		coast live oak	22674.6	9638.2
Age (years) 80	Age (years)	45.6 in DBH & 49.6 ft high	(lb/tree)	(lb/tree)		
					49,988.8	21,248.7

Tree and Building Data entry Enter Tree data below one tree at a time, then record results						Above ground biomass
	Data name	Data entry	Units	Description		
Species code and	scientific name	QUIL2 (Quercus ilex)		roble negro	(kg/tree)	(dry weight) (kg/tree)
	Age (years)	80	Age (years)	31.5 in DBH & 66.7 ft high	(lb/tree)	4273.7 (lb/tree)
					22,165.7	9,421.9