Figure 1. Soil test values from each spring (S) and fall (F) from 2019 ('19) to 2021 ('21) by farm along a north-to-south, 240-km transect from Cache to Juab Counties in Northern Utah. A) soil pH, B) soil salinity, C) Olsen soil test total available phosphorus (P), and D) Olsen soil test total available potassium (K), representing 0 to 30 cm depths in the soil. E) Total soil nitrate-nitrogen (NO₃-N) from 0 to 60 cm depths in the soil. Pink shading represents values that are considered high to excessive for crop production.
Figure 2. Cumulative daily yield by harvest date and nitrogen application rate (0, 56, 112, 168, and 224 kg ha\(^{-1}\)) at the Utah Agricultural Experiment Station – Greenville Research Farm in A) 2019, B) 2020, and C) 2021.
Figure 3. Total season yield by nitrogen (N) application rate (0, 56, 112, 168, and 224 kg ha⁻¹) at the Utah Agricultural Experiment Station – Greenville Research Farm in A) 2019, B) 2020, and C) 2021.
Figure 4. Soil test values from each spring (S) and fall (F) from 2019 (‘19) to 2021 (‘21) at the Utah Agriculture Experiment Station – Greenville Research Farm in North Logan, Utah. A) soil pH, B) soil salinity, C) Olsen soil test total available phosphorus (P), and D) Olsen soil test total available potassium (K), representing 0 to 30 cm depths in the soil. E) Total soil nitrate-nitrogen (NO₃-N) from 0 to 60 cm depths in the soil. Pink shading represents values that are considered high to excessive for crop production.