Table 1. Crop husbandry in study locations

Parameters	Florence (2022)	Clemson (2023)
Plot size	20 feet x 20 feet	20 feet x 18 feet
Corn variety	Little Mill H117 SC	Albert Lea Organic Viking/Blue River Corn, O82-14GS-P
Corn planting date	26 April 2022	12 May 2023
Corn row spacing	30 inches	30 inches
Corn plant population	30,000 plants/acre	36,000 plants/acre
Fertilizer materials	Chicken litter	Nature Safe 10-2-8 fertilizer composed of natural feather meal, meat and bone meal, blood meal, and sulfate of potash.
Fertilizer application	140-80-160 lbs/acre N-P-	120-0-40 lbs/acre N-P-K
rate (as per soil test)	K	
Irrigation	~ 0.10 inch/hour/per acre applied almost daily through drip irrigation from V4 stage to physiological maturity	Rainfed

Table 2. Cover crop seeding rates

Crop species		Seeding rate (kg ha ⁻¹)						
Cio	o species	Low	Standard	High				
White clover		2.6	3.9	5.9				
Buckwheat		44.8	67.3	100.9				
Pigeonpea		9.7	14.6	21.9				
	White clover	0.9	1.3	2.0				
Mixture	Buckwheat	14.9	22.4	33.6				
	Pigeonpea	3.2	4.9	7.3				

Table 3. Estimated materials costs used for different cover crops inter-seeding under different tillage systems in 2022 and 2023.

2022 (\$/acre)	2023 (\$/acre)			
Seeds	\$105	Seeds	\$126	
Irrigation labor, energy	\$54			
Lube, filters	\$3.51	Lube, filters	\$4	
Fuel	\$23.40	Fuel	\$23.40	

Fertilizer costs	\$393.50	Fertilizer costs	270.72
Operating costs			
Tillage costs	\$108.95	Tillage costs	\$108.95
Pre-harvestor	\$20.75	Pre-harvestor	\$20.75
Harvestor	\$29.46	Harvestor	\$29.46
Irrigation system	\$287.01		
Custom hire	\$83.50	Custom hire	\$53.75
Machine labor	\$6.08	Machine labor	\$6.08
Total costs	\$1115.16	Total costs	\$643.11

Table 4. Estimated costs for cover crops with different seeding rates.

	Seeding rate							
Cover crop Cost	High	Low	Standard					
Buckwheat	\$247.72	\$110.10	\$165.15					
PigeonPea	\$482.62	\$215.32	\$321.75					
White clover	\$154.50	\$67.05	\$102.03					
Mix	\$295.93	\$131.68	\$196.48					

Table 5. Partial budgeting/ economic analysis of cover crop interseeding in corn production under different tillage systems in Florence, 2022

Tillage	Focused treatme nt	Comparab le Treatment	Added costs	Reduce d Return s	Total negativ e effects	Reduce d costs	Added return s	Total positiv e effects	Total effects of cover crops relative to no cover crops & fertilizer s
Convention	110	1100000000	\$393.5		0110005	u 00505	\$173.4	\$173.4	5
al	Ctl1	Conv, Ctl2	0	\$0.00	\$393.50	\$0.00	8	8	-\$220.02
		,	\$641.2		·		\$129.4	\$129.4	·
	BW, high	Conv, Ctl2	2	\$0.00	\$641.22	\$0.00	1	1	-\$511.81
	, 0	,	\$503.6				\$203.8	\$203.8	
	BW,low	Conv, Ctl2	0	\$0.00	\$503.60	\$0.00	1	1	-\$299.79
	,	,	\$558.6		·				·
	BW,std	Conv, Ctl2	5	\$38.66	\$597.31	\$0.00	\$0.00	\$0.00	-\$597.31
	,	,	\$876.1	·	·		·	·	·
	PP,high	Conv, Ctl2	2	\$13.50	\$889.62	\$0.00	\$0.00	\$0.00	-\$889.62
			\$608.8				\$299.5	\$299.5	
	PP,low	Conv, Ctl2	2	\$0.00	\$608.82	\$0.00	2	2	-\$309.30
			\$715.2				\$204.2	\$204.2	
	PP,std	Conv, Ctl2	5	\$0.00	\$715.25	\$0.00	8	8	-\$510.97
			\$548.0						
	WC,high	Conv, Ctl2	0	\$86.63	\$634.62	\$0.00	\$0.00	\$0.00	-\$634.62

	1	l	\$460.5						
	WC,low	Conv, Ctl2	\$400.3 5	\$142.56	\$603.10	\$0.00	\$0.00	\$0.00	-\$603.10
			\$495.5						
	WC,std	Conv, Ctl2	3	\$6.88	\$502.40	\$0.00	\$0.00	\$0.00	-\$502.40
	N 6: 1: 1	G G.12	\$689.4	Φ105.5 2	0074.05	Φ0.00	Φ0.00	Φ0.00	007405
	Mix,high	Conv, Ctl2	3	\$185.52	\$874.95	\$0.00	\$0.00	\$0.00	-\$874.95
	Mix,low	Conv, Ctl2	\$525.1 8	\$0.00	\$525.18	\$0.00	\$354.7 4	\$354.7 4	-\$170.44
	TVIIA,10 W	Conv, Cu2	\$589.9	ψ0.00	ψ323.10	ψ0.00	\$213.2	\$213.2	φ1/0.11
	Mix,std	Conv, Ctl2	6	\$0.00	\$589.96	\$0.00	8	8	-\$376.68
Reduced			\$393.5						
	Ctl1	Red, Ctl2	0	\$0.40	\$393.90	\$0.00	\$0.00	\$0.00	-\$393.90
	BW, high	Red, Ctl2	\$641.2 2	\$39.33	\$680.55	\$0.00	\$0.00	\$0.00	-\$680.55
	DW, mgn	Reu, Cli2	\$503.6	φ39.33	\$000.55	\$0.00	\$358.3	\$358.3	-\$000.55
	BW,low	Red, Ctl2	0	\$0.00	\$503.60	\$0.00	4	4	-\$145.26
			\$558.6				\$171.6	\$171.6	
	BW,std	Red, Ctl2	5	\$0.00	\$558.65	\$0.00	6	6	-\$386.99
			\$876.1				\$152.8	\$152.8	
	PP,high	Red, Ctl2	2	\$0.00	\$876.12	\$0.00	6	6	-\$723.26
			\$608.8				\$346.9	\$346.9	
	PP,low	Red, Ctl2	2	\$0.00	\$608.82	\$0.00	8	8	-\$261.84
			\$715.2						
	PP,std	Red, Ctl2	5	\$0.00	\$715.25	\$0.00	\$20.98	\$20.98	-\$694.27
			\$548.0				\$328.4	\$328.4	
	WC,high	Red, Ctl2	0	\$0.00	\$548.00	\$0.00	3	3	-\$219.57
			\$460.5				\$286.2	\$286.2	
	WC,low	Red, Ctl2	5	\$0.00	\$460.55	\$0.00	3	3	-\$174.32
			\$495.5						
	WC,std	Red, Ctl2	3	\$0.00	\$495.53	\$0.00	\$29.21	\$29.21	-\$466.32
			\$689.4	.		.	\$145.5	\$145.5	
	Mix,high	Red, Ctl2	3	\$0.00	\$689.43	\$0.00	9	9	-\$543.84
	3.61	D 1 C:10	\$525.1	ф0.00	Φ 505.1 0	ФО ОС	Φ.5. O. C	Φ. 7. 2. 1	Φ 7100 4
	Mix,low	Red, Ctl2	8	\$0.00	\$525.18	\$0.00	\$5.34	\$5.34	-\$519.84
	M:4-1	D-1 C412	\$589.9	\$0.00	¢500.06	\$0.00	\$138.5	\$138.5	¢451.45
	Mix,std	Red, Ctl2	6	\$0.00	\$589.96	\$0.00	1	1	-\$451.45

Table 6. Partial budgeting/ economic analysis of cover crop interseeding in corn production under different tillage systems in Clemson, 2023.

									Total effects
									of cover crops
									relative
				Reduce	Total			Total	to no cover
	Focused	Comparab	A 3 3 . 3	d	negativ	D . J	Added	positiv	crops &
Tillage	treatme nt	le Treatment	Added costs	Return s	e effects	Reduce d costs	return s	e effects	fertilizer s
- I IIII G		110001	\$270.7		0110005	u costs	\$173.4	\$173.4	
	Ctl1	Conv, Ctl2	2	\$0.00	\$270.72	\$0.00	8	8	-\$97.24
	BW,	Conv, Ctl2	\$518.4 4	\$0.00	\$518.44	\$0.00	\$129.4 1	\$129.4 1	-\$389.03
	high	Conv, Cuz	\$380.8	\$0.00	\$318.44	\$0.00	\$203.8	\$203.8	-\$389.03
	BW,low	Conv, Ctl2	2	\$0.00	\$380.82	\$0.00	1	1	-\$177.01
			\$435.8						
	BW,std	Conv, Ctl2	7	\$38.66	\$474.53	\$0.00	\$0.00	\$0.00	-\$474.53
	DD biab	Conv, Ctl2	\$753.3 4	\$13.50	\$766.84	\$0.00	\$0.00	\$0.00	-\$766.84
	PP,high	Conv, Cuz	\$486.0	\$13.30	\$700.84	\$0.00	\$299.5	\$299.5	-\$/00.84
	PP,low	Conv, Ctl2	4	\$0.00	\$486.04	\$0.00	2	2	-\$186.52
		·	\$592.4				\$204.2	\$204.2	
	PP,std	Conv, Ctl2	7	\$0.00	\$592.47	\$0.00	8	8	-\$388.19
	WC,high	Conv, Ctl2	\$425.2 2	\$86.63	\$511.84	\$0.00	\$0.00	\$0.00	-\$511.84
	w C,mgn	Conv, Cu2	\$337.7	\$60.03	\$311.0 4	\$0.00	\$0.00	\$0.00	-\$J11.0 4
	WC,low	Conv, Ctl2	7	\$142.56	\$480.32	\$0.00	\$0.00	\$0.00	-\$480.32
			\$372.7						
	WC,std	Conv, Ctl2	5	\$6.88	\$379.62	\$0.00	\$0.00	\$0.00	-\$379.62
	Mix,high	Conv, Ctl2	\$566.6 5	\$185.52	\$752.17	\$0.00	\$0.00	\$0.00	-\$752.17
	wiix,iiigii	Conv, Cu2	\$402.4	\$105.52	\$732.17	\$0.00	\$354.7	\$354.7	-φ/ <i>32</i> .17
	Mix,low	Conv, Ctl2	0	\$0.00	\$402.40	\$0.00	4	4	-\$47.66
Convention			\$467.1				\$213.2	\$213.2	
al	Mix,std	Conv, Ctl2	8	\$0.00	\$467.18	\$0.00	8	8	-\$253.90
	Ctl1	Red, Ctl2	\$270.7 2	\$0.00	\$270.72	\$0.00	\$194.3 1	\$194.3 1	-\$76.41
	BW,	, <u>-</u>	\$518.4		*=: 0: , 2	+	_	-	4 , 3
	high	Red, Ctl2	4	\$0.00	\$518.44	\$0.00	\$30.64	\$30.64	-\$487.80
	DW/1	Dod C410	\$380.8	\$0.00	¢200.02	ድስ ስስ	\$216.1	\$216.1	¢164.62
	BW,low	Red, Ctl2	2 \$435.8	\$0.00	\$380.82	\$0.00	9 \$263.5	9 \$263.5	-\$164.63
	BW,std	Red, Ctl2	7	\$0.00	\$435.87	\$0.00	1	1	-\$172.36
	·	Í	\$753.3				\$154.6	\$154.6	
	PP,high	Red, Ctl2	4	\$0.00	\$753.34	\$0.00	3	3	-\$598.71
Reduced	PP,low	Red, Ctl2	\$486.0 4	\$0.00	\$486.04	\$0.00	\$57.65	\$57.65	-\$428.39

		\$592.4						
PP,std	Red, Ctl2	7	\$237.12	\$829.59	\$0.00	\$0.00	\$0.00	-\$829.59
		\$425.2				\$108.1	\$108.1	
WC,high	Red, Ctl2	2	\$0.00	\$425.22	\$0.00	8	8	-\$317.04
		\$337.7				\$191.4	\$191.4	
WC,low	Red, Ctl2	7	\$0.00	\$337.77	\$0.00	4	4	-\$146.32
		\$372.7						
WC,std	Red, Ctl2	5	\$0.00	\$372.75	\$0.00	\$33.68	\$33.68	-\$339.06
		\$566.6						
Mix,high	Red, Ctl2	5	\$0.00	\$566.65	\$0.00	\$81.78	\$81.78	-\$484.87
		\$402.4				\$158.4	\$158.4	
Mix,low	Red, Ctl2	0	\$0.00	\$402.40	\$0.00	5	5	-\$243.95
		\$467.1				\$143.4	\$143.4	
Mix,std	Red, Ctl2	8	\$0.00	\$467.18	\$0.00	3	3	-\$323.75

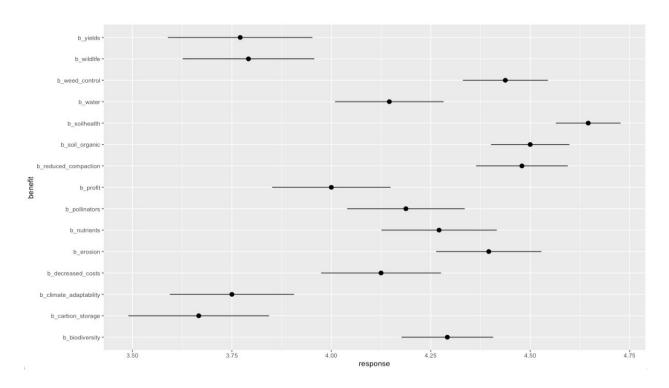


Figure 1: Responses on a 5-point scale (1= "not at all important" to 5= "extremely important") about the various benefits of cover crops.

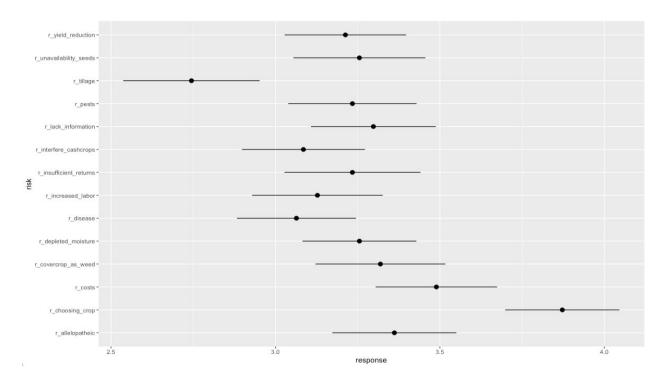


Figure 2: Responses on a 5-point scale (1= "not at all important" to 5= "extremely important") about the various risks of cover crops.



Figure 3. Biomass production of interseeded cover crops under conventional tillage and reduced tillage conditions at Clemson, SC in 2023. Cover crops buckwheat, pigeonpea, white clover and their mixture were interseeded at standard, low (1.5 times less than the standard rate), and high (1.5 times higher than the standard rate) seeding rates.

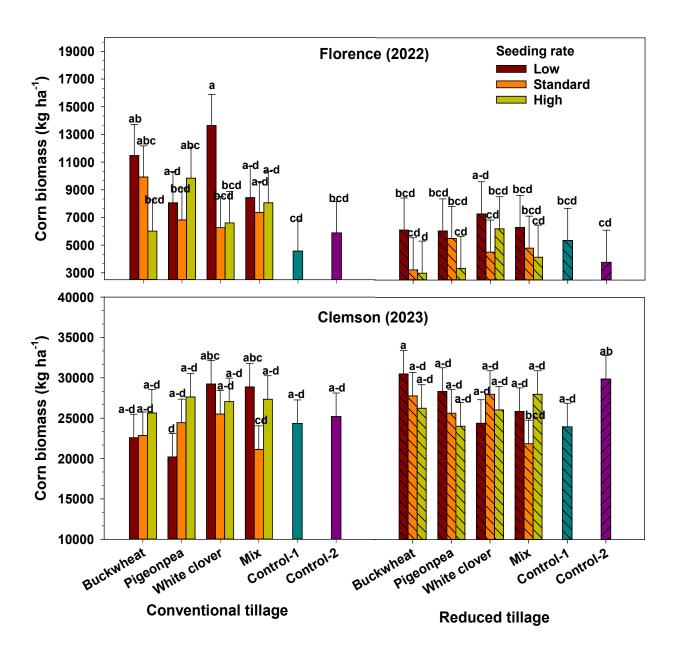


Figure 4. Effect of interseeded cover crops on corn biomass under conventional tillage and reduced tillage conditions. Cover crops buckwheat, pigeonpea, white clover and their mixture were interseeded at standard, low (1.5 times less than the standard rate), and high (1.5 times higher than the standard rate) seeding rates. Control-1: No cover crops, with fertilizer; Control-2: No cover crops, no fertilizer.

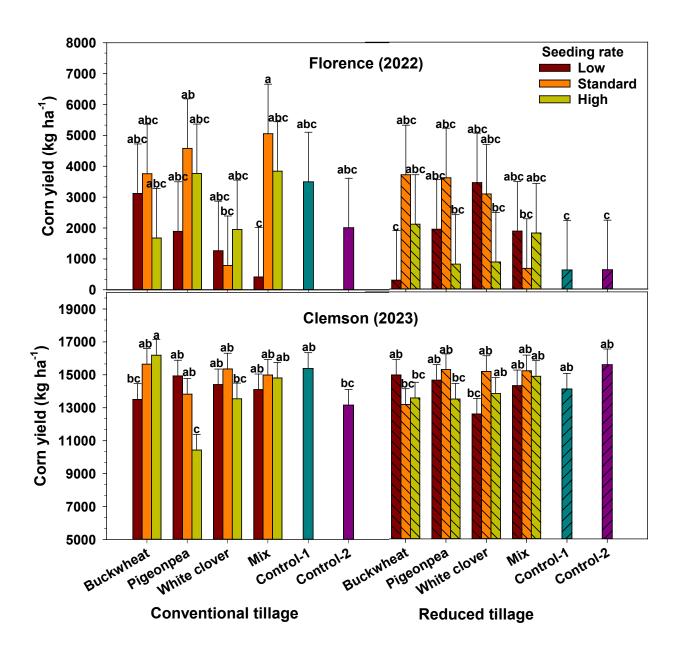


Figure 5. Effect of interseeded cover crops on corn grain yield under conventional tillage and reduced tillage conditions. Cover crops buckwheat, pigeonpea, white clover and their mixture were interseeded at standard, low (1.5 times less than the standard rate), and high (1.5 times higher than the standard rate) seeding rates. Control-1: No cover crops, with fertilizer; Control-2: No cover crops, no fertilizer.

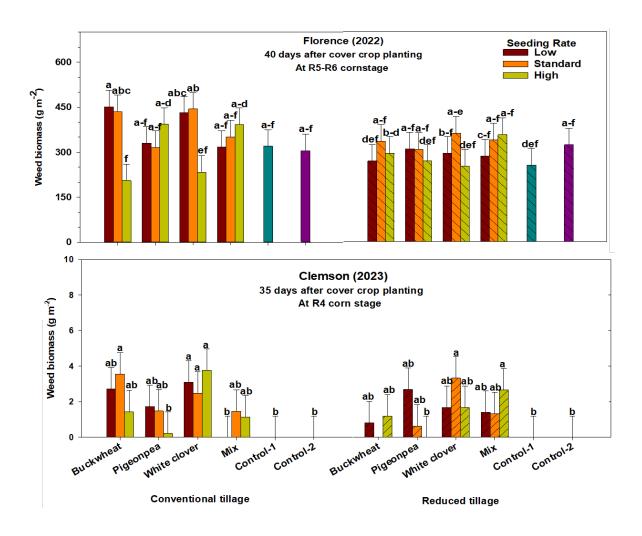


Figure 6. Effect of interseeded cover crops on weed presence under conventional tillage and reduced tillage conditions. Cover crops buckwheat, pigeonpea, white clover and their mixture were interseeded at standard, low (1.5 times less than the standard rate), and high (1.5 times higher than the standard rate) seeding rates. Control-1: No cover crops, with fertilizer; Control-2: No cover crops, no fertilizer.

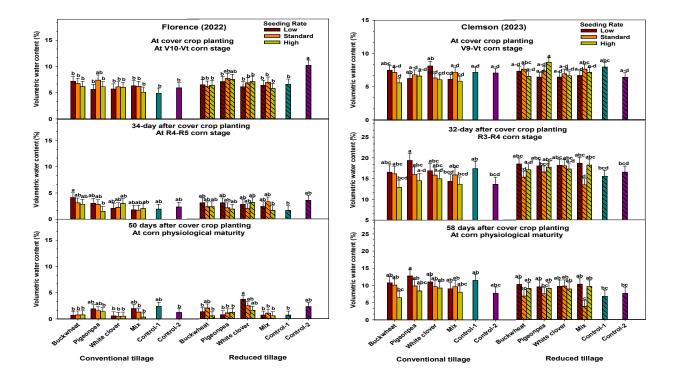


Figure 7. Effect of interseeded cover crops on volumetric soil water content under conventional tillage and reduced tillage conditions. Cover crops buckwheat, pigeonpea, white clover and their mixture were interseeded at standard, low (1.5 times less than the standard rate), and high (1.5 times higher than the standard rate) seeding rates. Control-1: No cover crops, with fertilizer; Control-2: No cover crops, no fertilizer.

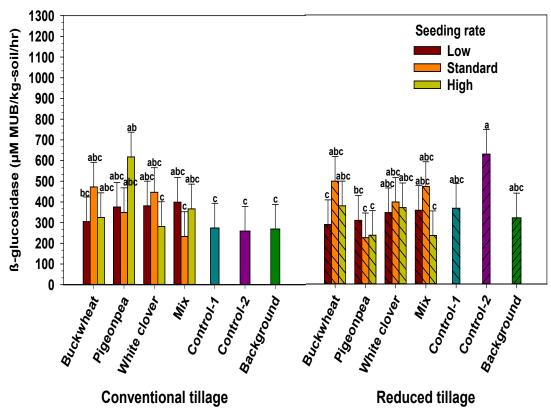


Figure 8. Effect of interseeded cover crops on β -glucosidase enzyme activity under conventional tillage and reduced tillage conditions. Cover crops buckwheat, pigeonpea, white clover and their mixture were interseeded at standard, low (1.5 times less than the standard rate), and high (1.5 times higher than the standard rate) seeding rates. Control-1: No cover crops, with fertilizer; Control-2: No cover crops, no fertilizer. Background was soil samples collected before corn planting.

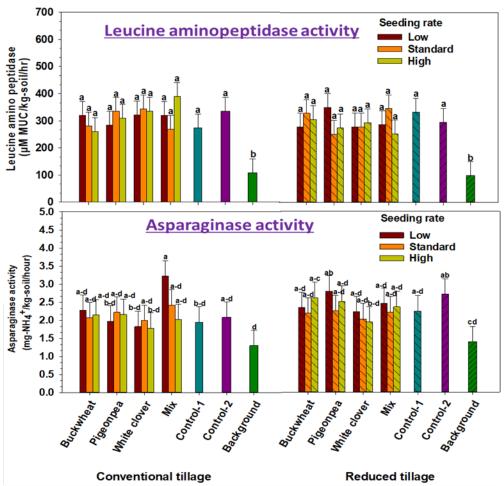


Figure 9. Effect of interseeded cover crops on leucine aminopeptidase and asparaginase enzyme activities under conventional tillage and reduced tillage conditions. Cover crops buckwheat, pigeonpea, white clover and their mixture were interseeded at standard, low (1.5 times less than the standard rate), and high (1.5 times higher than the standard rate) seeding rates. Control-1: No cover crops, with fertilizer; Control-2: No cover crops, no fertilizer. Background was soil samples collected before corn planting.

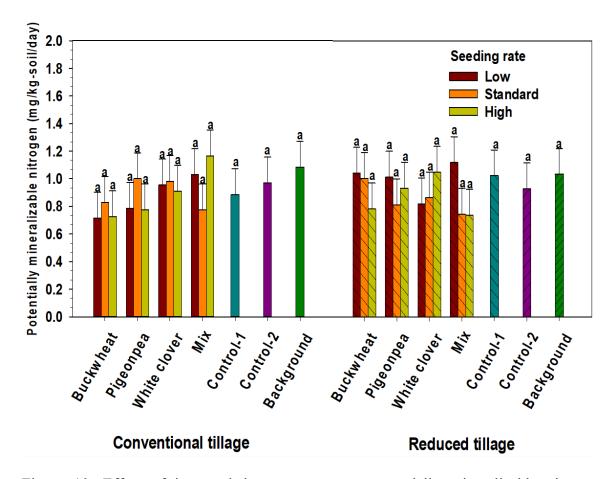


Figure 10. Effect of interseeded cover crops on potentially mineralizable nitrogen under conventional tillage and reduced tillage conditions. Cover crops buckwheat, pigeonpea, white clover and their mixture were interseeded at standard, low (1.5 times less than the standard rate), and high (1.5 times higher than the standard rate) seeding rates. Control-1: No cover crops, with fertilizer; Control-2: No cover crops, no fertilizer. Background was soil samples collected before corn planting.

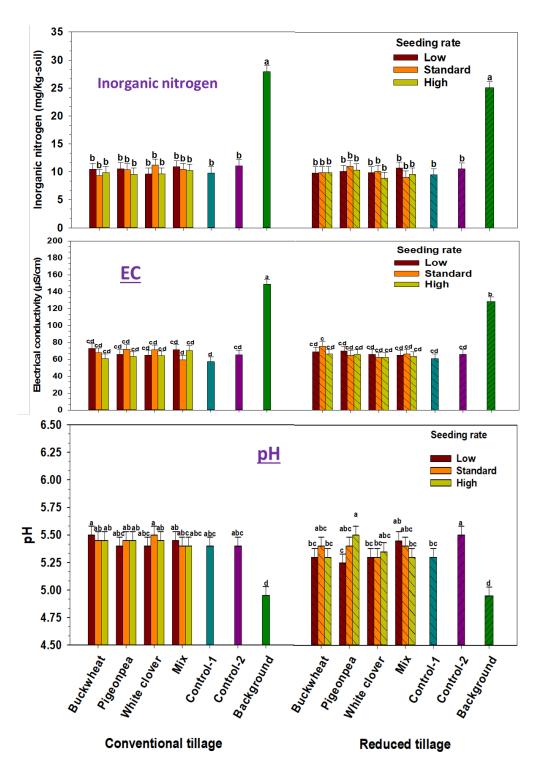


Figure 11. Effect of interseeded cover crops on inorganic nitrogen, EC and pH under conventional tillage and reduced tillage conditions. Cover crops buckwheat, pigeonpea, white clover and their mixture were interseeded at standard, low (1.5 times less than the standard rate), and high (1.5 times higher than the standard rate) seeding rates. Control-1: No cover crops, with fertilizer; Control-2: No cover crops, no fertilizer. Background was soil samples collected before corn planting.

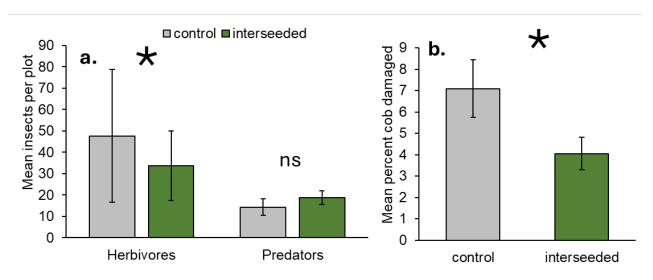


Figure 12. Herbivore and predatory insect responses to inter-seeded cover crop treatments (a), and cover crop effects on herbivore damage to organic corn cobs in Clemson, SC, 2023.

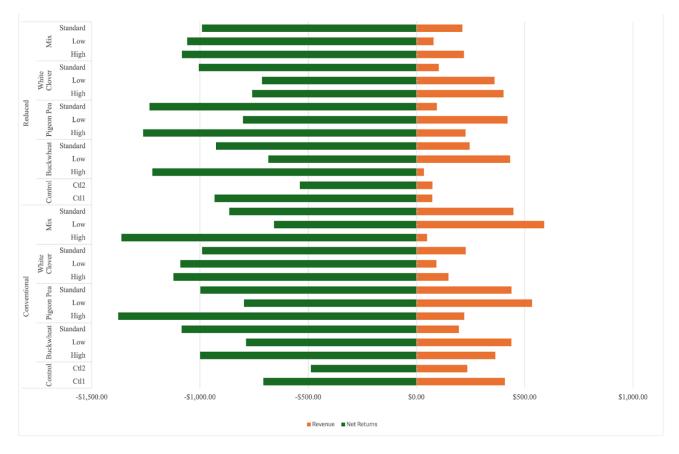


Figure 12. Revenue and net returns from corn yield with interseeded cover crops under conventional tillage and reduced tillage conditions in 2022.

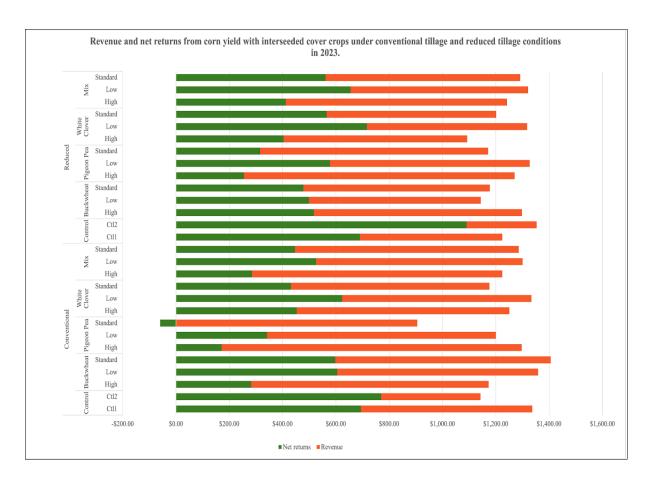


Figure 13. Revenue and net returns from corn yield with interseeded cover crops under conventional tillage and reduced tillage conditions in 2023.