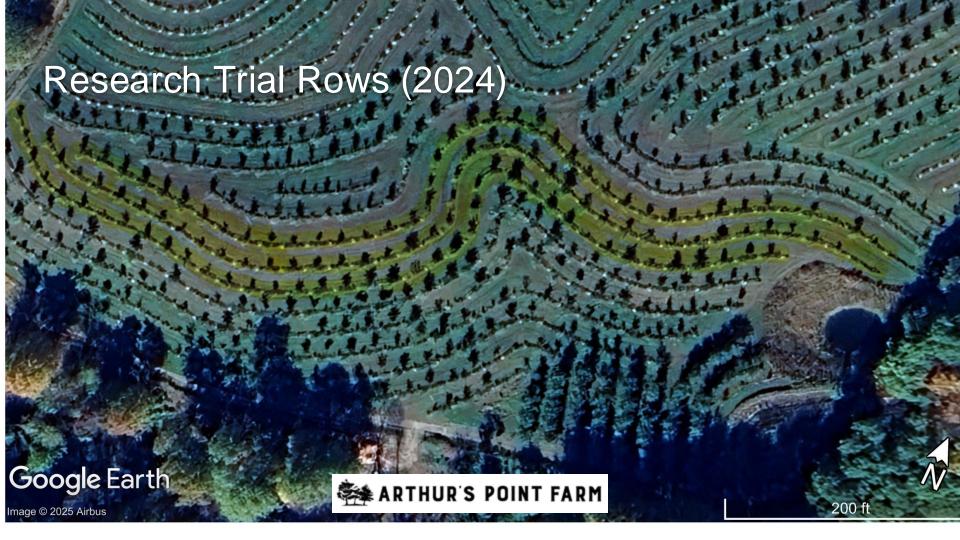


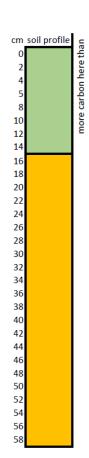
The Use of Biochar in Agroforestry to Promote Soil Microbial Health, Tree Productivity, and Carbon Sequestration

INTERIM SARE REPORT

Dec 2024

Arthur's Point Farm, Ghent, New York





Completed Test Metrics (Soil & Deep Core Samples)

- Samples taken in March 2022 and 2025
- Soil Health, Biochemistry and Nutrients assessed for 60 sample points at 6" depth
- Deep carbon sampling, 40 samples
 - A. Topsoil considered as 0 15 cm
 - B. Average Max Attained Depth: 58 cm (see inset)
- Carbon and Bulk Density for each (A, B)

Soil Sample Processing

Hydraulic Soil Cores sent to lab and cut at 15 cm and remainder

- Air-dry entire core sections for weight capture
- Measured total soil dry weight versus tube volume for Bulk density
- Separated stone fraction from soil
- Calculated particle density of each fraction
- Measured Total-C * on soil fraction less stone fraction
- Calculated carbon stock correcting for soil density

Challenges on the way

soil weight (g)	soil dried weight (g)	Moisture %	BD g/cc	Rocks (g)	% soil	Top Tube Volume		Corrected BD g/cc
359.53	255.37	30.05	1.120	130.16	46.33	216.44	49.12	0.671

- Significant stones in all bulk density samples
- In some cores, less than 50% is soil
- Carbon measured only in soil fraction.

Baseline (2022) Results

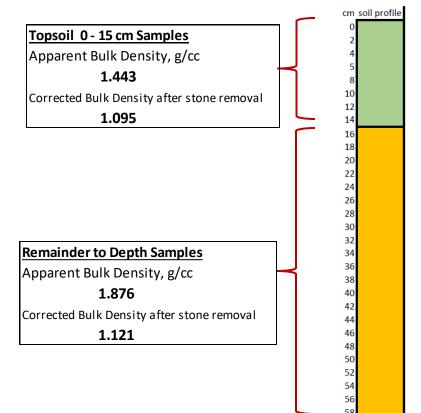
- Mass per Area by Layer
 - A. Separate soil from stones (!)
 - B. Correct BD and analyze TOC soil
 - C. Compare topsoil to depth (layer)
 - D. Huge difference in layers
 - E. Compare topsoil by 2 methods

Topsoil 0–15 cm Results:

Avg in Core samples:

1.32 ± 0.34 %TOC •

Avg in Fertility samples:

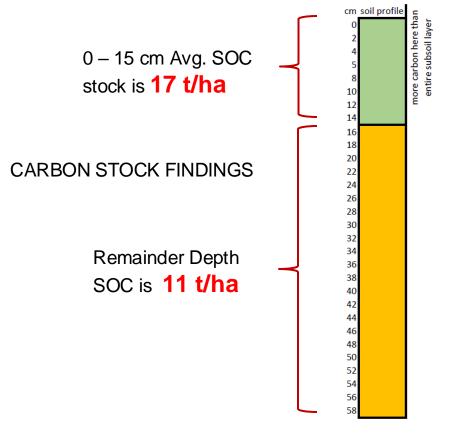

1.26 ± 0.38 %TOC

Remainder (15 ~ 60cm)

Avg. in core samples:

 $0.19\% \pm 0.11 \% TOC$

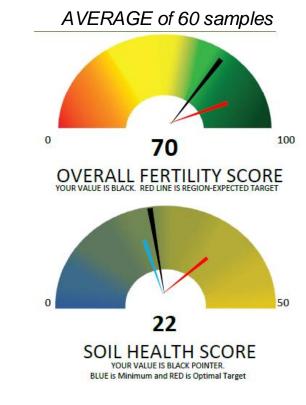
Close agreement by 2 different sampling methods (n=40 vs n=60)



ARTHUR'S POINT FARM

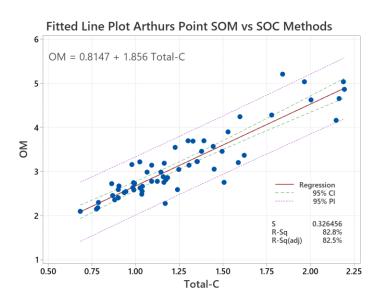
Summary Carbon Stock

- Depth stratification of C is great as is variability between samples
- Of total carbon at depth, 60% is in the top 6" (15 cm) layer
- Suggested: not necessary to examine carbon below 15 cm since quantities likely to be very low with very high variability



Overview – Field Soil Health and the Bigger Picture - 2022

- Average field fertility is 70% of target (best condition expected for region)
 - o pH is optimal; Ca, Mg adequate
 - N-min is moderate and K-potassium the most likely deficient crop nutrient element
- Health Index (7 indicators) is 22 or 60% of target for this region and soil type.
- Ranked less-than-target mostly due to:
 - Lower than normal OM and carbon so improvements can be expected
 - Low soil crumb (aggregate) structure possibly linked to structureless Inceptisol



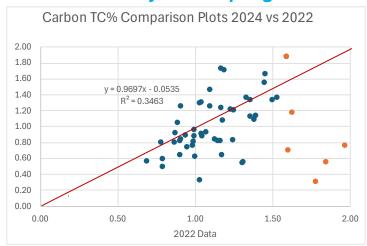
Results Details First Sampling Period 2022

Traditional Organic Matter methods closely correlated to modern carbon combustion

Baseline Results: No significant differences in TOC between 5 treatments in layout*

TR	ID N	Mean	Grouping	
1.	Control	12	1.340	a'
2.	+Biochar(BC)	12	1.3113	а
3.	+Compost(Com)	12	1.249	а
4.	+BC+Com	12	1.248	а
5.	+BC+Com+Ad	12	1.1353	а

Notes: BC = Biochar 4 cups each; Com = compost 1 gal each
Grouping Information using Fisher mean separation method
and 95% Confidence Intervals



^{*}Means that do not share a letter are significantly different.

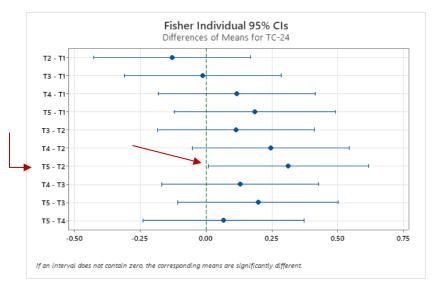
2024 Year 2 - Sampling Period Results

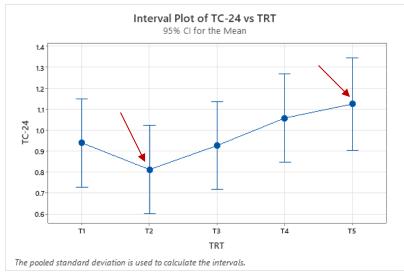
a) Carbon comparison of 2022 and 2024. Close correlation is good but with several outliers which may be sampling variance.

Notes: Orange dots are outlier data; dotted line actual data; red line is "perfect fit". Deviation from lines is sampling error.

2nd Yr (2024) Results: 15% apparent decline from 2022 in sampled zones; could also be sampling error. TR 5 has more carbon

TR	ID N	Mean	% TC
1.	Control	12	0.939
2.	+Biochar(BC)	12	0.811 b
3.	+Compost(Com)	12	0.926
4.	+BC+Com	12	1.057
5.	+BC+Com+Ad	12	1.124 a
		····	


reatment 5 is statistically different than Treatment 2 by Fishers Test.

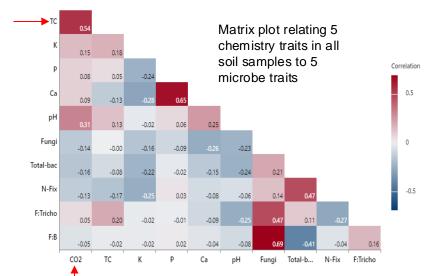

^{*} All soils self-sampled to 6" deep.

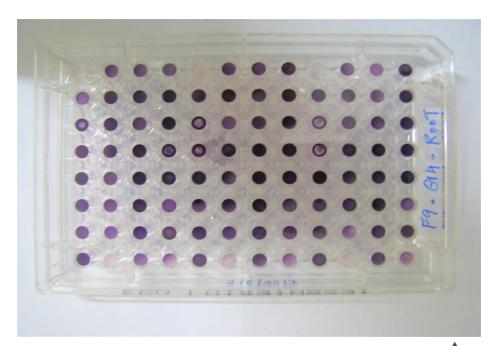
Emergent Results for Year 2 (2024)

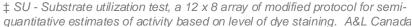
Recent tests show a <u>significant result</u>: Treatment-5 (full treatment) is higher in carbon than T2 (biochar alone)

Range of % TC in soil samples versus treatmentsonly the lowest versus highest are significant

Notes: Data based on Fisher LSD comparison. The Fisher test is less conservative than a Tukey Mean Separation Analysis.

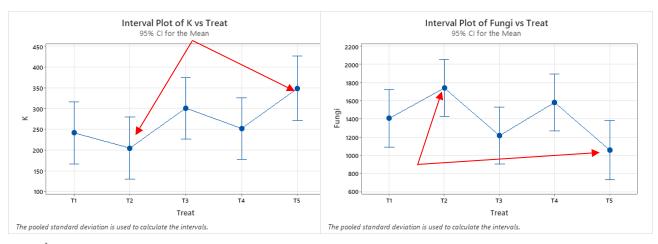



Are there measurable biological effects by 2024?

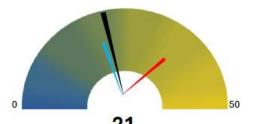

Microbiology traits by modified substrate utilization assay which examines 12 microbial properties

- -TC* and CO2-microbial respiration are well correlated
- -No definitive relation of SU[‡] microbiology to other traits

* TC = total carbon, CO2 is a chemical test for microbial emissions of carbon dioxide



Overview - Field Soil Health - 2024


- Average field fertility essentially no change from 2022
 - K-potassium exhibiting very high levels in certain locations; especially treatment 5 (full suite); this is where fungi are the lowest (both statistically significant)
 - Biochar treatment has least nutrients; most fungi- an indirect effect?

AVERAGE of 59 samples

OVERALL FERTILITY SCORE

SOIL HEALTH SCOR

BLUE is Minimum and RED is Optimal Target
Color range based on Solvita Color Scale

Microbial: Nutrient chemistry relationships – 2024

Microbiology traits by modified substrate utilization assay which examines 12 features

- 1,034 unique pairs of test data for 59 soil samples were examined by comparing microbiological with soil health-nutrient variables[‡]
- 24 pairs showed some level of statistical importance (> 95% certainty or p < 0.05)
- 4 pairs indicated positive interactions;
 20 matched negative influences.§

Generally, higher levels of pH corresponded to <u>lesser microbiology</u>. Related to this, higher levels of K, Ca, Mg affected microbe utilization negatively. Higher pH and basic elements Ca, K and Mg often result from biochar and compost additions, but compost also provides organic nitrogen,

[§] A negative correlation means one variable adversely affected by the other – see table

_						
	Microbial Factor	Nutrient Factor Pa	irs	Correlation	P-Value	
	Aer:Anaer	SLAN	59	0.377	0.0030	Positive -
	G+-	TC	59	0.329	0.0110	- stronger to
	Gram Neg	BD	59	0.271	0.0380	weaker
	N-Fixers	BD	59	0.266	0.0420	J Weaker
	Psuedomonas	NO3	59	-0.416	0.0010	٦
	Bacteria	K	59	-0.335	0.0090	
	Rhizobium	рН	59	-0.322	0.0130	
	Rhizobium	Mg	59	-0.313	0.0160	
	Total-Microbes	BS %	59	-0.313	0.0160	
	Total-bacteria	NO3	59	-0.31	0.0170	
	Total-Microbes	NO3	59	-0.308	0.0180	
	Fungi	BS %	59	-0.301	0.0210	
	Total-Microbes	рН	59	-0.295	0.0230	
	Anaerobes	SLAN	59	-0.293	0.0240	Negative -
	Gran Neg	Mg	59	-0.293	0.0240	 stronger to
	Gran Neg	N-Min	59	-0.278	0.0330	weaqker
	Rhizobium	BS %	59	-0.278	0.0330	
	Total-bacteria	Mg	59	-0.275	0.0350	
	N-Fixers	WSA	59	-0.272	0.0370	
	Gram Neg	WSA	59	-0.271	0.0380	
	Gram Pos	b-pH	59	-0.267	0.0410	
	Gr+:Act	CN	59	-0.261	0.0460	
	Actinomycetes	Mn	59	-0.26	0.0470	
	Total-Microbe	K	59	-0.258	0.0480	
	Fungi	Ca	59	-0.258	0.0490	_

 ${\bf Microbe\ factors\ from\ Substrate\ Utilization\ Array}$

Nutrient factors from Soil Health Analysis

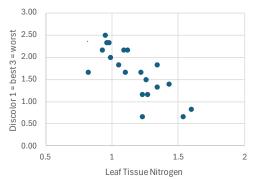
Note: P-value the smaller the number the more significant. P 0.01 = 99% certainty

[‡] Pairwise Pearson correlation, 95% confidence intervals;

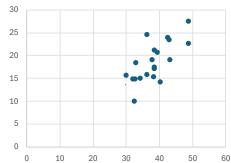
Microbial: Tree Health Metrics 2022-2024

6 attributes assessed by farm crew§

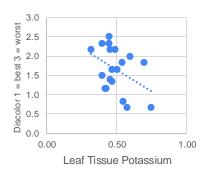
METRIC	SCALE	Best Score
Height	0 - 40	largest
Crown	0 - 30	largest
LiveCrown Ratio	0 - 100%	largest
Vigor	1 - 5	1 or smallest
Dieback	0 - 100%	smallest
Discoloration	0 - 3	0 or smallest


Generally, best performance corresponded to more tissue nitrogen. Least discoloring with more plant nitrogen and potassium. Performance in 2022 correlated with crown height in 2024.

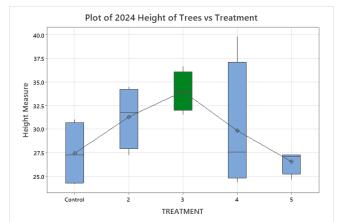
10

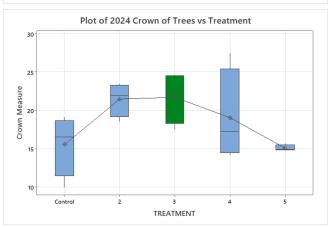

§ Vermont Forest Health Monitoring Protocol, 2019

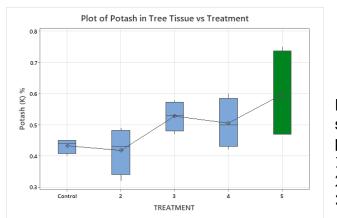
Discoloration (y) vs Tissue Nitrogen

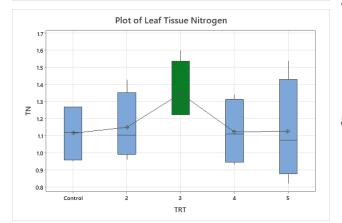


Crown Hgt in 2024 vs Live Crown % in 2022


Live crown base


Discoloration vs Tissue Potassium





Microbial: Tree Health vs Treatments in 2024

Levels of statistical significance for high points are as p:

 $1 \le 0.079$

2-<0.052

3-<0.058

4- >0.10

🗪 ARTHUR'S POINT FARM

