
UMassAmherst

Tactics for Apple Scab Management in 2016

Daniel Cooley Stockbridge School of Agriculture University of Massachusetts Amherst

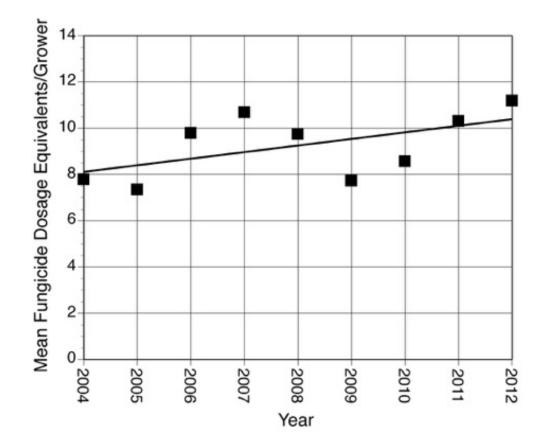
New England apples

- Six states apple production about 25% of that in Michigan
- Estimated value of \$70 million on 11,000 acres
- Small orchards, significant direct sales market
- IPM used at least to some extent in most orchards

Pest complex similar

- Major annual disease problem is scab
- Fire blight increasingly damaging
- Powdery mildew, sooty blotch / flyspeck, and summer rots also becoming more common problems

Tactics or strategy?


- Every year we need an overall plan to effectively manage scab
- Be efficient in fungicide use
- In the longer run, need to preserve fungicide efficacy – limit resistance development

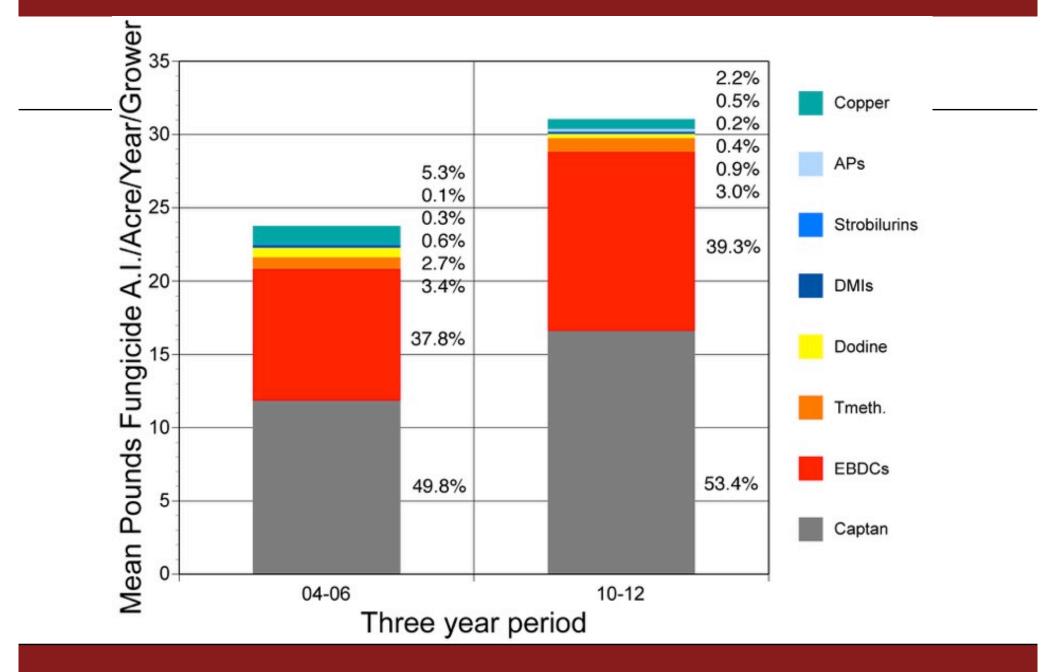
Fungicide sprays increasing

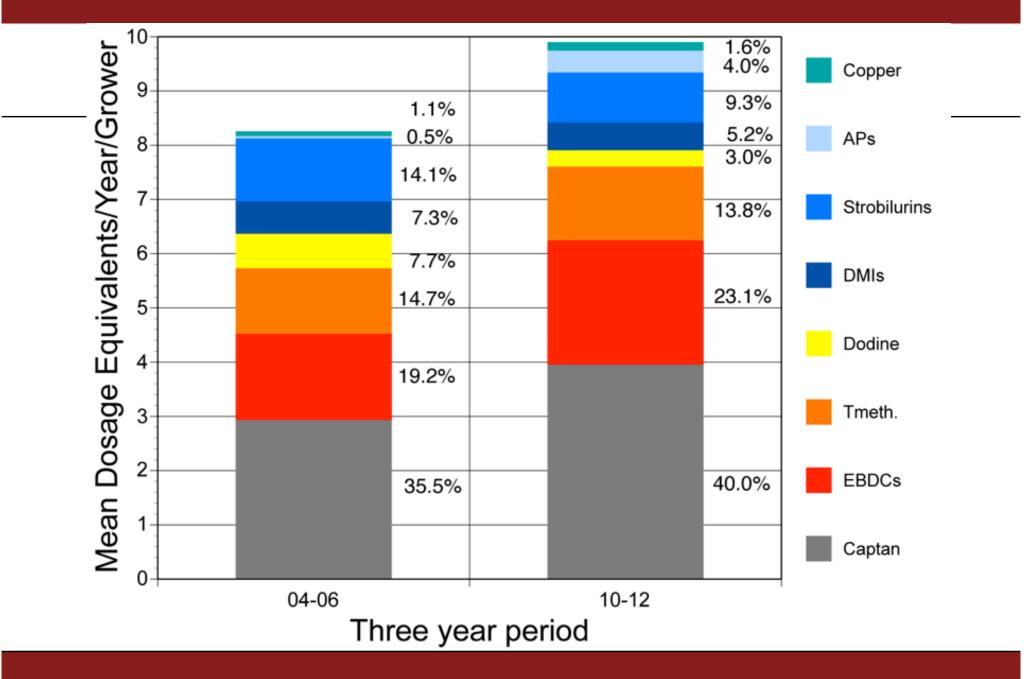
- Recently some growers in New England have approached season limits on captan use
- 40 lb/A Captan 80
- Both amounts of fungicide and numbers of sprays are increasing


Dosage equivalent is one spray at the full label rate

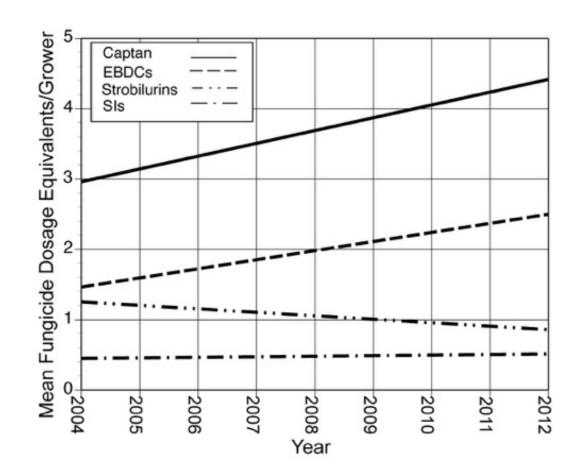
Fungicide use in apples - 2000's

- Remember the 10-day DMI program?
- Selected for DMI resistance
 - Vintage, Rally, Procure, Indar, Inspire, Topguard
- New England survey over 2004 – 2012 showed over 75% of orchards with high or developing DMI resistance (Villani et al.)




The captozeb solution

- Resistance to Qol's or strobilurin's also found
 - Flint, Sovran
- Mix of captan plus an EBDC fungicide such as mancozeb was recommended and widely used
 - Dithane, Manzate, Penncozeb, *Polyram*
- Contact fungicides, multi-site action, no resistance issues
- Relatively inexpensive



Widely adopted in New England and eastern NY

- However …
- Does not control powdery mildew
- Protectant limited postinfection activity to cover mistakes
- Needs to be reapplied frequently
- Generally recommended for "clean" orchards
- Recent issues with fruit and leaf damage

Aass

Typical fungicide program 2004-05

Fungicide	EIQ	ΑΙ	Lb/A	Uses	Total
Kocide	33.3	0.45	7	1	21
Captan 80WDG	15.8	0.8	2	4	101
Captan 80WDG	15.8	0.8	2.5	1	32
Captan 80WDG	15.8	0.8	1	2	25
Penncozeb 80DF	14.6	0.8	3	2	70
Polyram 80DF	40	0.8	3	1	96
Syllit 65WG	22	0.65	1	1	14
Rally 40WSP	33	0.4	0.25	1	3
Flint	30.9	0.5	0.125	1	2
Topsin M 70WDG	22.42	0.7	0.75	3	35
Total				17	400

EIQ up by

Typical fungicide program 2011-12

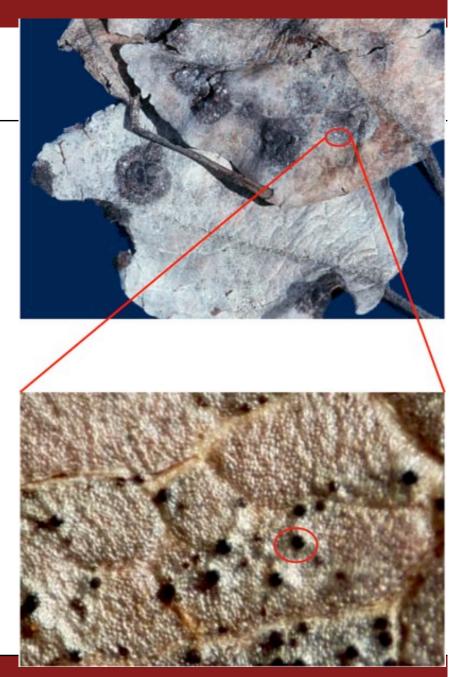
Fungicide	EIQ	ΑΙ	Lb/A	Uses	Total
Kocide	33.3	0.45	7	1	105
Captan 80WDG	15.8	0.8	2.5	3	95
Captan 80WDG	15.8	0.8	2	2	51
Captan 80WDG	15.8	0.8	1	3	38
Penncozeb 80DF	14.6	0.8	3	3	105
Polyram 80DF	40.0	0.8	3	1	96
Syllit 65WG	22.0	0.65	1	1	14
Rally 40WSP	33.0	0.4	0.2	1	3
Flint	30.9	0.5	0.125	1	2
Topsin M 70WDG	22.4	0.7	0.75	3	35
Inspire Sup. cyprodinil	21.9	0.24	0.09	1	0
Inspire Sup. difenoconazole	48.7	0.08	0.09	1	0
Total				21	544

EIQ up 36%

The current situation

- Growers use captozeb only as part of scab season management plan – newer materials important
- DMI's, QoI's, SDHI's or AP's at others
 - SDHI's Fontelis, Aprovia, pre-mixes Luna Sensation, Luna Tranquility, Merivon
 - AP's Vangard, Scala
- Primary consideration scab risk
- Risk of other diseases
- Manage resistance

Scab initial inoculum


- Scab epidemics start on the orchard floor -
- Infected leaves carry scab through the winter
- At about green tip, inoculum just starts to mature and get ready for release in rains
- Ascospores keep maturing and releasing until fruit are set and begin to grow

Overwintering inoculum

- Overwintering inoculum has become a larger problem in recent years.
- Mistakes with protectants
- So?
- More ascospores
- More early season-ascospores
- "Light" infection periods become important
- Overall scab risk increases

Orchard sanitation – every year

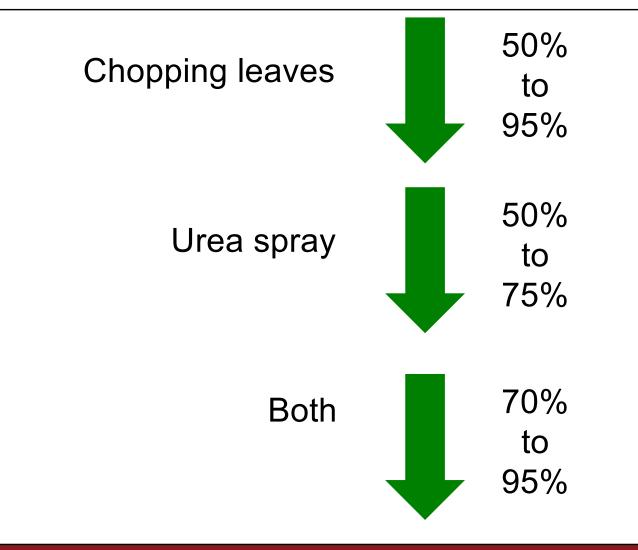
- Orchard sanitation destroys overwintering scab inoculum in orchards
- Less scab inoculum reduces risk of primary infection, particularly early in the season
- Less chance of a mistake having serious consequences
- Less chance of resistance development

But I didn't have any scab last year!

- Fruit scab not well correlated with inoculum in leaves
- DMIs are fungistats not fungicides
- Scab may reactivate on leaves in fall
- Few growers or consultants scout overwintering inoculum – Potential Ascospore Dose or PAD

Won't scab inoculum come in from outside my orchard?

- 99.99% travels no more than 100 ft.
- Large sources mean some may be a problem because 0.01% of a lot of inoculum may be enough to infect
- Know what's around an orchard – e.g. abandoned blocks


But it's an extra expense and haggle without definite return

- Sanitation costs about as much as a scab spray
- Leaf chopping alone is least expensive, still gives significant reduction
- "If an extra spray would significantly reduce scab risk, and also help maintain efficacy of new fungicides, would I use it?"

Sanitation Treatment	Cost/A	80 A Orchard	
Urea treatment	\$60	\$4,800	
Leaf chopping	\$10	\$800	

Benefits of sanitation

Leaf chopping

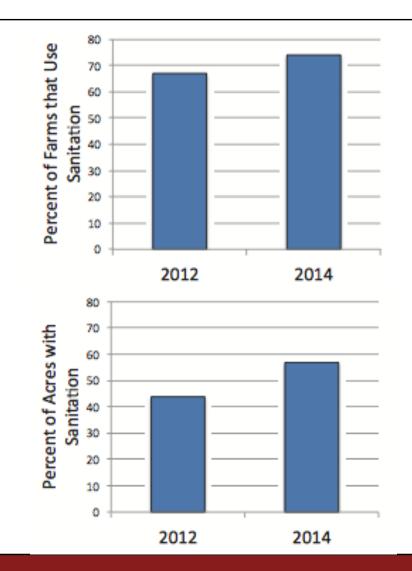
- Can chop leaves in fall or spring
- Spring flips leaves over eliminating on average 50% of inoculum immediately
- Get as much of the leaf cover as you can – rake to row middles
- Allow time for microbes, earthworms, to break down leaves

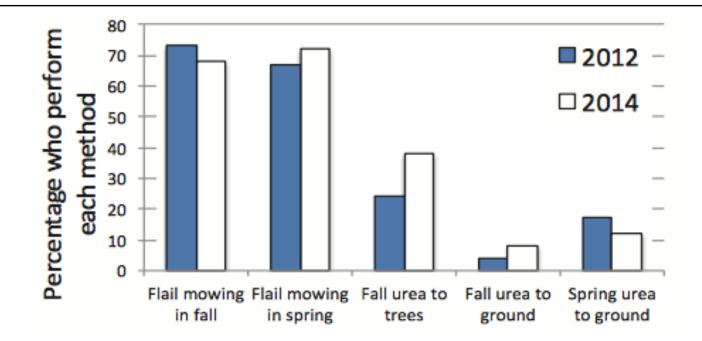
Eliminé flail chopper -Vincent Philion

Urea treatment

- Mix 40 lb. <u>feed grade urea in</u> 100 gal. / A
- Apply in fall just before leaf fall
- Can apply in fall or early spring to leaves on ground but not as effective
- Allows less time for microbes, earthworms, to degrade leaves
- Supplies approx. 20 lbs. actual
 N / A adjust fertilizer

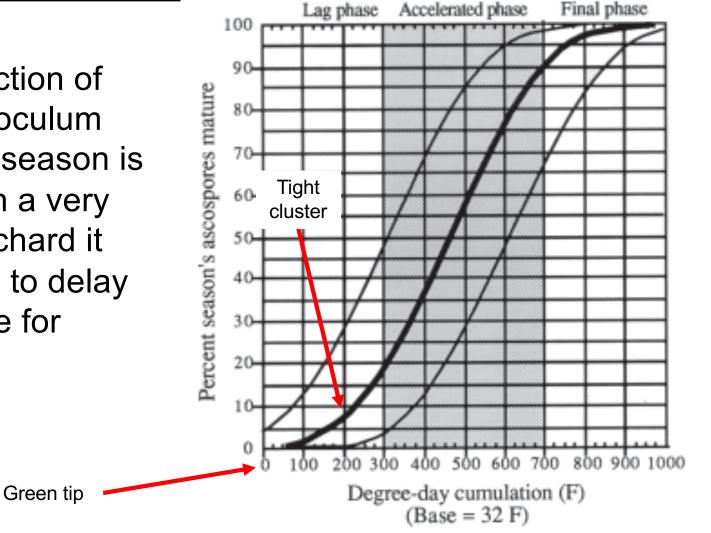
But won't fall N decrease winter hardiness?


- No evidence is to the contrary - it may enhance bud health next spring
- For ex. cherry work by Greg Lang
- But whether urea is used, or only chopping, sanitation is highly recommended
- Think of it as killing off scab


New England growers use sanitation

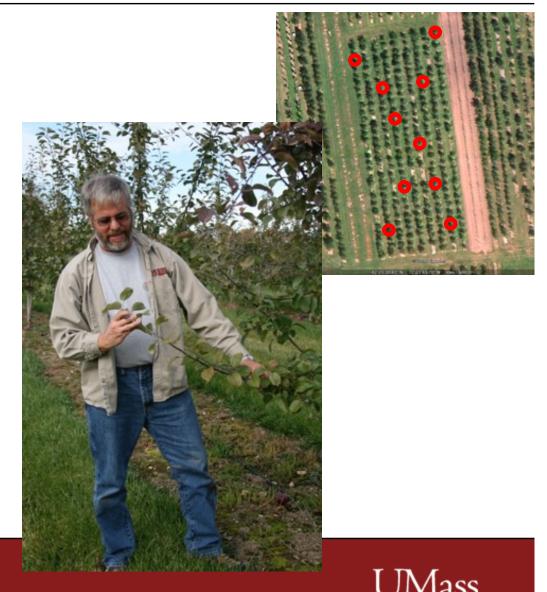
- Survey of New England growers from 2012, repeated 2014
- Most New England apple growers use some form of orchard sanitation for scab
- Acres increasing
- Most common reason for not doing – lack of time when it needed to be done

Majority use flail chopping though urea increasing



- Most common method is flail mowing fall and spring
- Fall urea to trees is increasing

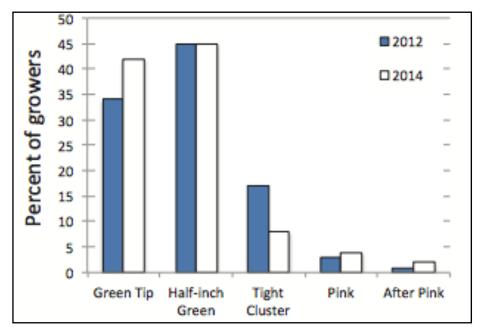
Delay the first scab fungicide?


Because the fraction of the total scab inoculum released for the season is very low early, in a very low inoculum orchard it may be possible to delay the first fungicide for scab.

Need to accurately measure primary inoculum

- Potential ascospore dose
 PAD
- Leaves on trees are sytematically sampled after harvest in the fall
- Mean evaluation time for 2 to 10 acre blocks is 33 min.
- Combine with sanitation

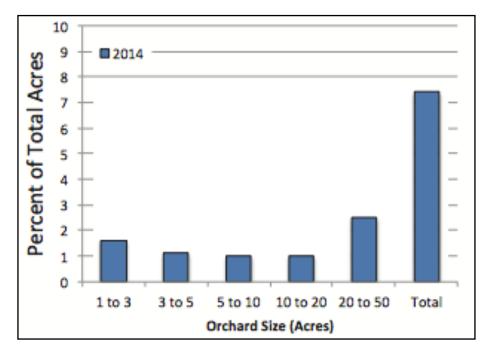
PAD-based delay results 2008-2013


Year	Delay blocks	Mean delay days (growth stage)	Mean infection periods	Harvest scab delay	Harvest scab check
2008	7	-	-	0.1%	2.2%
2009	9	9 (tight cluster)	1.7	3.6%	10.3%
2010	5	8 (tight cluster)	1.2	0.8%	0.4%
2011	6	6 (tight cluster)	1.7	0.6%	1.5%
2012	12	20 (pink to bloom)	0.7	0.7%	0.1%
2013	10	8 (pink)	0	0.5%	1.5%

- In 49 test blocks, all delay treatments had less fruit scab at harvest than checks.
- Saved 1 to 3 fungicide applications.

Little scab indexing (PAD) or delay of first spray

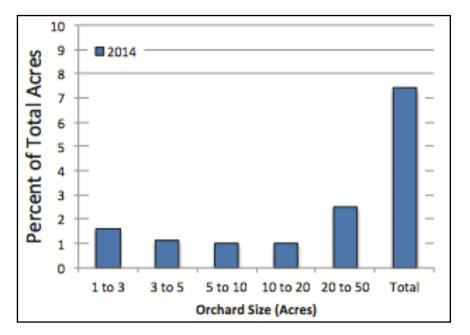
- 2012 15% of surveyed growers did PAD
- 2014 24%
- Why not?
- Too little time
- Did not know how to do it
- Of marginal value?



Growth stage when the first non-copper fungicide was applied by growers. Some growers delay on part of the farm, not on others. Only 15% delayed to tight cluster or longer.

Little scab indexing or delay

- 2012 15% of surveyed growers did PAD
- 2014 24%
- Why not?
- Too little time
- Did not know how to do it
- Of marginal value?



Percent of acres where the first non-copper fungicide was delayed to tight cluster or later - 7% of orchard acres.

Little scab indexing or delay

- 2012 15% of surveyed growers did PAD
- 2014 24%
- Why not?
- Too little time
- Did not know how to do it
- Of marginal value?

Percent of acres where the first non-copper fungicide was delayed to tight cluster or later.


Issues with skipping an early sprays

- An early-season mistake can cause worse disease than a late-season mistake
- Savings on even three fungicide applications may not justify risk of a scab outbreak – may take several seasons to reduce inoculum levels
- Scab outbreaks breed pathogen resistance
- Ascospore maturity model used to estimate the amount of available inoculum does not perform well in dry conditions

Thanks

- This work was made possible by a grant from Northeast SARE and was a collaboration of Extension and University professionals from New England.
- Thanks also to the growers who took on the challenge of trying this approach.
- And of course Arthur Tuttle who has worked so hard getting this information.

