Study of core technologies in tree canopy parameter measurements for precision spraying

Md Sultan Mahmud

Department of Agricultural and Biological Engineering PhD Student

03/22/2022

Outline

Overview of Specialty Crop Industry

Spray Operation in Tree Fruit Orchards

Precision Spraying in Tree Fruit Orchards

Precision Spraying

Apply chemical according to the need

Major Advantages

- Accurate spray deposition
- Reduce off-target deposition and drift

Major Tasks

- Sensor application and algorithm development
- Tree canopy characteristics measurement
- Automatic nozzle and airflow control

College of Agricultural Sciences Fruit Research & Extension Center

Goal & Objectives

Overall Goal

Developing core technologies for advancing the orchard spraying system for tree fruits

Objectives

- Development of an accurate tree canopy density measurement system to apply correct spray volume
- Development of an automatic airflow control system to reduce drift
- Advancing sprayer with site-specific management capability for disease management
- Application of unmanned aerial vehicle (UAV) to measure canopy characteristics for undrivable orchards

PennState

College of Agricultural Sciences Fruit Research & Extension Center

Objective 1:

Experiment No. 1

Development of a Section-based Tree Canopy Density Measurement System for Precision Spray Applications

Methodology:

Tree Scanning

System Development

Tree Scanning using LiDAR Sensor

Methodology: Canopy Points Segmentation

Results:

Canopy Density Measurement

Prediction Models Performance

Agricultural Sciences

Results:

Extension Center

Conclusions

- A strong correlation of 0.95 was achieved between manually counted leaves and acquired point cloud data using Fuji apple tree data (smaller canopy)
- Canopy volume measured by using the alpha shape algorithm showed a very strong relationship with manually counted leaves with a correlation up to 0.98 by using alpha value of 1
- Generated canopy density map can pinpoint high, moderate, and less density, and no leaf regions within the apple trees, which could be able to guide the precision management systems

Objective 1:

Experiment 2

Correction of 3D-LiDAR Sensed Canopy Density Information in Sloping Terrains using Sensor Fusion

$$\mathbf{P}_{\mathbf{C},\mathbf{z}} = \sin(\theta_{\mathrm{r}}) \times \{\mathrm{ycos}(\theta_{\mathrm{w}}) + \mathrm{xsin}(\theta_{\mathrm{w}})\} - \cos(\theta_{\mathrm{r}}) \times [\sin(\theta_{\mathrm{P}}) \times \{\mathrm{xcos}(\theta_{\mathrm{w}}) - \mathrm{ysin}(\theta_{\mathrm{w}})\} - \mathrm{zcos}(\theta_{\mathrm{P}})]$$

Results: Canopy Points Correction

Acquired Canopy Point Cloud Data (m)			Corrected Canopy Point Cloud Data ^a (m)		
X-axis	Y-axis	Z-axis	X-axis	Y-axis	Z-axis
-0.3741389	2.4954416	-1.74862551	-0.949640696	2.863179554	-0.570337959
-0.3719452	2.4838406	-1.73404051	-0.942590976	2.847847258	-0.562131877
-0.3738951	2.4999006	-1.73877065	-0.946041097	2.864230844	-0.560189176
-0.3724327	2.4931417	-1.7276210	-0.940853456	2.854467195	-0.553125488
-0.3724327	2.4961532	-1.72326702	-0.939364306	2.855897707	-0.548250842
-0.3741389	2.5106061	-1.72678237	-0.942169901	2.870409201	-0.545863441
-0.3751138	2.5201662	-1.72688624	-0.943121585	2.879312109	-0.542372064
-0.3758451	2.5280948	-1.72584276	-0.943451814	2.886341669	-0.538503896
-0.3763325	2.5343860	-1.7236605	-0.943163514	2.891495069	-0.534268521
-0.3785262	2.5521810	-1.72925598	-0.947138638	2.909758628	-0.53241819
-0.3821823	2.6039382	-1.70526788	-0.942369816	2.950257216	-0.492359104
-0.2731461	2.6115448	-1.71090064	-0.841835855	2.971970214	-0.529774896
-0.3753576	2.5603585	-1.67035055	-0.924014279	2.898881828	-0.478624863
-0.2721002	2.6045159	-1.6998065	-0.837058641	2.961922016	-0.522718668
-0.3743826	2.5566121	-1.66155238	-0.92008897	2.892647703	-0.472450584
-0.2722745	2.6091491	-1.69634419	-0.836038258	2.965142589	-0.518020714
-0.3746264	2.5611745	-1.65816655	-0.919159989	2.895818268	-0.467822054
-0.2703571	2.5937107	-1.67987378	-0.828603256	2.945566041	-0.509373477
-0.3746264	2.5640646	-1.65369394	-0.917630265	2.897096644	-0.462884147
-0.2682654	2.5765486	-1.6623823	-0.820655227	2.924062007	-0.500470155

^aChange of roll and pitch of about 20° (degree)

College of Agricultural Sciences

Red: Corrected Canopy

Fruit Research & Extension Center

Results:

Canopy Points Correction

Conclusions

- The simulation results suggested that the model could provide the corrected canopy point location for any change of roll, pitch, and yaw
- Field evaluation results demonstrated that the system was able to correct the apple tree canopy points in different sloping conditions
- The developed system could be able to reduce up to 15.45% of off-target deposition

College of Agricultural Sciences Fruit Research & Extension Center

Objective 2:

Experiment No. 1

Development of An Automatic Airflow Control System for Precision Sprayers Based on Tree Canopy Density

Methodology: Damper Installation

Methodology: Airflow Measurement and Spray Deposition

Results:

Airflow and Spray Deposition

PennStateCollege of Agricultural SciencesFruit Research & Extension Center	21/41
--	-------

Airflow Control Model & Field Evaluation

 $airflow = 2047.2 \times canopy \ points^{-0.65}$ (for GoldRush) $airflow = 2535.9 \times canopy \ points^{-0.653}$ (for Gala)

Theoretical and Experimental Airflow Measurements

Results:

0.75

Conclusions

- Air penetration through canopies was higher in the lower density trees compared to the medium and higher density trees
- The damper opening 2 offered higher spray deposition on high-density trees than the other openings
- The damper opening 4 could be suitable for medium-density fruit trees, and opening 5 for lowdensity trees
- The airflow control system was able to calculate the required damper opening and the airflow requirement for uniform spray deposition and reduced drift

College of Agricultural Sciences Fruit Research & Extension Center

Objective 3:

Experiment No. 1

Detection of Apple Fire Blight Disease using Artificial Intelligence

- Bacterial disease
- Causing bloom and shoot blight
- Kill blossoms and shoots and cause dieback of branches from cankers
- Severe fire blight can cause trees to die

College of Agricultural Sciences Fruit Research & Extension Center

Problem Statements

- Manual scouting is time-consuming
- Not practical for large-scale orchard

Objective

• Develop an **automatic fire blight detection system** using artificial intelligence

College of Agricultural Sciences

Fruit Research & Extension Center

Methodology: Image Acquisition and Processing

College of Agricultural Sciences Fruit Research & Extension Center

Methodology:

Deep Learning Application

College of Agricultural Sciences Fruit Research & Extension Center

Results:

Fire Blight Disease Detection

Ground Truth and Detections GT=green, pred=red, captions: score/loU

Detected Area Comparison

Evaluation Parameter	Percentage (%)
Precision	92.79
Recall	91.15
F1 Score	91.96

College of Agricultural Sciences Fruit Research & Extension Center

Fire Blight Disease Detection

Results:

29/41

Extension Center

Agricultural Sciences

Conclusions

- An artificial intelligence-based fire blight detection algorithm performed impressively with the detection precision, recall, and F1 score of 92.79%, 91.15% and 91.96%, respectively
- Some of the false detections were reported may be due to the illumination variations, shading effects, and complex background
- The IoU value of the detection model was up to 83.5% showing the potential of using this approach for automatic fire blight scouting in the apple orchard

College of Agricultural Sciences Fruit Research & Extension Center

Objective 4:

Experiment No. 1

Unmanned Aerial Vehicle based Tree Canopy Characteristics Measurement for Precision Spray Applications

Problem Statements

- Difficult in undrivable orchard
- Manual approach is not practical
- Time consuming
- Labor intensive
- Inaccurate

College of Agricultural Sciences Fruit Research & Extension Center

Methodology:

Canopy Data Collection and Referencing

Methodology:

DSM Without Ground

Height Map

Height Measurement

Results:

Tree Height Measurement

	Manual	UAV-	Absolute	
Tree	Mogeuro	based	Error	
No.	ment (m)	Measure ment (m)	(m)	(%)
1	2.69	2.93	0.24	8.92
2	2.9	3.45	0.55	18.9 7
3	2.87	3.32	0.45	15.6 8
4	3.12	3.09	0.03	0.96
5	3.2	2.96	0.24	7.5
6	3.3	2.97	0.33	10
7	3.4	3.36	0.04	1.18
8	3.63	2.9	0.73	20.1 1
9	2.97	3.02	0.05	1.68
10	2.95	2.88	0.07	2.37
11	2.97	2.69	0.28	9.43
12	2.78	2.78	0	0
13	2.79	3.02	0.23	8.24
14	3.1	3.2	0.1	3.23
15	3.33	3.04	0.29	8.71
16	3.18	3.15	0.03	0.94
17	3.09	2.85	0.24	7.77
18	3.25	3.33	0.08	2.46
19	2.92	3.41	0.49	16.7 8
20	3.4	3.39	0.01	0.29
21	2.84	2.89	0.05	1.76
22	2.82	2.72	0.1	3.55
23	2.92	2.84	0.08	2.74
24	3.25	3.05	0.2	6.15
Avera ge	3.07	3.05	0.20	6.64

Error between Manual and UAVbased Measurements

MAE = 0.21 mRMSE = 0.28 m

PennState

College of Agricultural Sciences

Fruit Research & Extension Center

Results:

Canopy Cover Measurements

Conclusions

- Experimental results indicated the potential of UAV-based apple tree canopy height measurement to quantify individual tree height with less than 10% error
- The canopy volume results showed a mean absolute error of 0.25 m3 while comparing UAV with ground measurements
- The UAV-based tree canopy characteristics measurements could be used to quantify the tree canopy characteristics to calculate the pesticide requirement for precision spraying applications in tree fruit orchards

Accomplishments

Awards & Research Grants

- 1. Outstanding Dissertation Award from College of Ag Sciences
- 2. Paul Hand Graduate Student Research Achievement Award from College of Ag Sciences
- 3. Harold V. and Velma B. Walton Doctoral Student Endowment in Agricultural and Biological Engineering
- 4. Northeast SARE Graduate Student Grant 2020-2022
- 5. College of Ag Science Graduate Student Competitive Grant 2021-2022

Journal Publications

- 1. Mahmud, M. S., He, L., Zahid, A., Choi, D., Zhu, H., Krawczyk, G., and Heinemann, P. (2022). Detection and feature analysis of apple fire blight using image processing and deep transfer learning. *Journal of the ASABE (formerly, Transections of the ASABE)* [Under Review]
- 2. Mahmud, M. S., Zahid, A., and He, L., Zhu, H., Choi, D., Krawczyk, G., and Heinemann, P. (2021) Development of an automatic airflow control system for precision sprayers based on tree canopy density. *Journal of the ASABE (formerly, Transections of the ASABE)* [Revision Requested]
- 3. Mahmud, M. S., Zahid, A., and He, L., Choi, D., Krawczyk, G., Zhu, H., and Heinemann, P. (2021). Development of a LiDAR-guided section-based tree canopy density measurement system for precision spraying. *Computers and Electronics in Agriculture*, 182, 106053
- 4. Mahmud, M. S., Zahid, A., He, L., and Martin, P. (2021). Opportunities and possibilities of developing an advanced precision spraying system for tree fruits. *Sensors*, 21, 3262
- 5. Mahmud, M. S., Zahid, A., He, L., Choi, D., Krawczyk, G., and Zhu, H. (2021). LiDAR-sensed tree canopy correction in uneven terrain conditions using a sensor fusion approach for precision sprayers. *Computers and Electronics in Agriculture*, 191, 106565

College of Agricultural Sciences

Acknowledgements

Ag Robotics & Sensing Lab Members

Funding:

Project No. PEN04547 and Accession No. 1001036 NIFA

Award No. 2019-70006-30440

Award No. GNE20-234-34268

Graduate Student Competitive Grant

Fruit Research & Extension Center

Thank you for listening

Contact: <u>mvm6735@psu.edu</u> (Md Sultan Mahmud)

