

The Use of Biochar in Agroforestry to Promote Soil Microbial Health, Tree Productivity, and Carbon Sequestration

INTERIM SARE REPORT Dec 2022

Arthur's Point Farm, Ghent, New York

Sustainable Agriculture Research and Education

Farm Study Overview

and the second sec

Methods Implemented

- Focus on soil organic carbon (SOC) with high combustion at 900°C
- Distinguish topsoil from depth
- Overall Soil Health (Solvita Nexus) for topsoil samples
 - Microbial scan
 - Leaf tissue tests
- Design enables statistical comparisons

RANKING:

High

High

VHigh

Medium

Optimal

Med-High

100

Sample Farm

Units

(0-5)

Vol %

g/cc

83

OVERALL FERTILITY SCORE

33 SOIL HEALTH SCORE VOR VALUE IS BLACK POINTER BUE IS MINIMUM and RED IS Optimal Target Green Manury/Cover Crop Recommendations Types of Inter-planting Blends Suggested: 100% Grass/Non-Legume

Color Key for Nutrient Fertility

(warning may be either too high or too low)

Normal Elevated

Very Low

125.6

4.66

26

0.96

Soil Health Panel

Solvita Response

Crumb Aggregates

Organic Matter

Scoop Bulk Density

Microbial Rate

Soil Amino-N

Woods End Laboratories

1111 / 11897.2
20 / COLORADO PLATEAU
Alfisol-Ustalfs / Entisol-Psamments / *
Soil: C Field C Clay
11/Feb/22 18/Feb/22
General Crops

Nutrients as: Ib/a	Inter	Est Carbon:		
	N	P205	<u>K2O</u>	lb/a
Soil Supply:	202	928	130	
Crop Use:	75	35	35	57,438
Difference:	0	0	0	
Min Annual Need	25	26	230	Est CEC, meq
Other Notations	OK	Excess	Normal	*Note

NUTRIENT PANEL

Analysis	Units	RESUL
Climate Zone at this Location	ZONE	6
Nitrogen as readily soluble NO3-N	ppm	18
Est. Seasonal Biological N-Release	lb/a	165
PMN (Avail. + N-Min) Nitrogen Potential	lb/a	202
Likelihood of added N-Response	Rating	Low

mg kg mg kg mg kg mg kg mg kg	209 3.1 56 8765 241
mg kg mg kg mg kg mg kg	3.1 56 8765 241
mg kg mg kg mg kg	56 8765 241
mg kg mg kg	8765 241
mg kg	241
mg kg	90
Rating	100%
	None
Optimal	0.3%
Unit	8.020
Unit	7.260
mg kg	142
Unit	8
mg kg	120
dry %	NT
	Rating Optimal Unit Unit mg kg Unit mg kg dry %

Laboratories

Completed Test Metrics (Soil & Deep Core Samples)

- Soil Health, Biochemistry and Nutrients assessed for 60 sample points at 6" depth
- Deep carbon sampling, 40 samples

 A. Topsoil considered as 0 15 cm
 B. Average Max Attained Depth : 58 cm (see inset)
- Carbon and Bulk Density for each (A, B)

Soil Sample Processing

Hydraulic Soil Cores sent to lab and cut at 15 cm and remainder

- Air-dry entire core sections for weight capture
- Measured total soil dry weight versus tube volume for Bulk density
- Separated stone fraction from soil
- Calculated particle density of each fraction
- Measured Total-C * on soil fraction less stone fraction
- Calculated carbon stock correcting for soil density

Challenges on the way

soil weight (g)	soil dried weight (g)	Moisture %	BD g/cc	Rocks (g)	% soil	Top Tube Volume	Top Rock Volume	Corrected BD g/cc
359.53	255.37	30.05	1.120	130.16	46.33	216.44	49.12	0.671

- Significant stones in all bulk density samples
- In some cores, less than 50% is soil
- Carbon measured only in soil fraction.

Summary Baseline Results

- Mass per Area by Layer
 - A. Separate soil from stones (!)
 - B. Correct BD and analyze TOC soil
 - C. Compare topsoil to depth (layer)
 - D. Huge difference in layers
 - E. Compare topsoil by 2 methods

Topsoil 0–15 cm Results: Avg in Core samples: 1.32 ± 0.34 %TOC Avg in Fertility samples: 1.26 ± 0.38 %TOC <u>Remainder (15 ~ 60cm)</u> *Avg. in core samples*: 0.19% ± 0.11 %TOC

Close agreement by 2 different sampling methods (n=40 vs n=60)

Summary Carbon Stock

- Depth stratification of C is great as is variability between samples
- Of total carbon at depth, 60% is in the top 6" (15 cm) layer
- Suggested: not necessary to examine carbon below 15 cm since quantities likely to be very low with very high variability

Overview – Field Soil Health and the Bigger Picture

- Average fertility 70% of target expected for region & soil
 - Carbon slightly low for NE soils
 - o pH is optimal; Ca, Mg adequate
 - N-min is moderate and K-potassium the most likely deficient crop nutrient element
- Soil Health Index (7 indicators) 60% of target
 - Lower than normal OM and carbon means improvements can be expected
 - Low soil crumb (aggregate) structure possibly linked to structureless Inceptisols
- Microbial indicators not yet interpreted; include F:B ratio; Trichoderma, actinomycetes
- Plant leaf tissue total nitrogen close to normal and varied significantly across zones. Difficult to sample young trees.

Results Details

Traditonal Organic Matter methods closely correlated to modern carbon combustion

Baseline Results: No significant differences in TOC between 5 treatments in layout *

<u>TR</u>	ID N	Mean	Grouping	
1.	ComBCh	12	1.340	А
2.	CmAdBT	12	1.3113	Α
3.	ConCom	12	1.249	Α
4.	ComAdd	12	1.248	Α
5.	CmAdBc	12	1.1353	А

Grouping Information Using the Tukey Method and 95% Confidence

Means that do not share a letter are significantly different.

* It is desirable that baseline, start conditions exhibit no significant differences between treatments; however large variability across field will compromise ability to distinguish small differences