Table 2. Pest suppression following termination of a mustard cover crop is caused by the enzymatic hydrolysis of glucosinlates. In *Brassica juncea* — the mustard species in this project — the primary glucosinolate is sinigrin. This table presents sinigrin concentrations in *Brassica juncea* cv 'rojo' grown at four sites in southern New Mexico. Plant tissues were collected just before plant termination. The table also presents literature reports of sinigrin concentrations for *B. juncea* grown under field conditions.

	Brassica juncea cv 'rojo'				Concentration ranges reported in literature				
Site	Green phenotype ¹		Purple phenotype		Bangarwa	Villata et al.,	Doheny-	Kirkegaard	Ngala et
	Shoot	Root	Shoot	Root	et al., 2011 ²	2016 ³	Adams et al., 2018 ⁴	and Sarwar <i>,</i> 1999 ⁵	al., 2015 ⁶
μmol g ⁻¹ tissue					μmol g ⁻¹ tissue				
Columbus	43.9	45.0	51.5	79.2					
Deming	91.0	56.4	69.4	64.6	0.5 – 72.3	29 – 72	6 – 37	5 – 35	10 – 112.5
Las Uvas	37.2	53.9	37.6	75.3					
Leyendecker	45.4	40.6	42.9	42.5					

¹ Brassica juncea cv 'rojo' included green and purple phenotypes

² Weed Science 59:247-254

³ Journal of Agricultural Chemistry and Environment 5:38-45

⁴ Journal of Agricultural and Food Chemistry 66:5108-5116

⁵ Australian Journal of Agricultural Research 50:315-324

⁶ Pest Management Science 71:759-769