Opportunities and Challenges Growing Industrial Hemp In Wisconsin

Wisconsin Land and Water Annual Conference

March 6, 2024

Jerry Clark

Agriculture Educator Chippewa, Dunn, Eau Claire Counties Division of Extension UW-Madison

Let's get these out of the way

- "This session is going to be smokin"
- "I got some good stuff from this session"
- "I wonder if he is going to talk about weed or grass control?"
- "I have such a learning high from this session"
- "I am lit after attending this session"

Plan for today

- Getting started
- Physiology
- Types of Industrial Hemp
- Growing practices
- Samples
- Local research
- Cropping system potential
- Opportunities and challenges

Current Industrial Hemp Production

	Wisconsin			United States			
	2021 2022 2022 as % of 2021		2021	2022	2022 as % of 2021		
			(percent)			(percent)	
All Hemp							
Area plantedacres	680	870	128	54,152	28,314	52	
Area harvestedacres	580	740	128	33,480	18,251	55	
Floral Hemp							
Area harvestedacres	110	(D)	(X)	15,980	7,105	44	
Yieldpounds per acre	780	(D)	(X)	1,235	954	77	
Production pounds	86,000	(D)	(X)	19,735,000	6,781,000	34	
Utilized production pounds	6,000	(D)	(X)	15,733,000	6,140,000	39	
Harvested not sold pounds	80,000	(D)	(X)	4,002,000	641,000	16	
Pricedollars per pound	136.00	(D)	(X)	39.60	29.10	73	
Value of productiondollars	816,000	(D)	(X)	623,236,000	178,900,000	29	

(D) Withheld to avoid disclosing data for individual operations.

(X) Not applicable.

Getting started

- Wisconsin grower License
 - USDA Domestic Hemp Production
 Program
 - No Cost
 - FBI Background Criminal History
 - Fees
 - Sampling
 - Testing

Physiology

- Short-day plant
 - Flowers < 12hrs
- Most are diecious
- Some breeding for monecious

Male Plants

- 10 to 15% taller and less robust.
- Die after shedding pollen.
- Specialized for pollen dispersal by wind.
- Bees (many types) are present at flowering but do not visit female flowers.

The birds and the bees

Female Plants

• Flowers in auxillary inflorences.

• Flowers congested.

Stigmas are long and covered with receptive papillae.

Industrial Hemp Production

- Types
 - Grain (oilseed)
 - Fiber
 - Hybrid (dual purpose, grain, fiber)
 - Essential Oils

Hemp Production

• Soil

- High fertility
 - Similar to corn
- Neutral pH
- Well drained soils

• Planting date

- Warm soil temps
- Above 50°F
- Planting after soybeans
- Adequate soil moisture

Hemp Grain and Fiber Production

- Seed bed prep
 - Seed is best planted at 0.75"-1.25"
 - Firm seed bed similar to alfalfa
 - Drilled at 7" rows

Seeding rate

- Grain (oil)
 - 25-40 lbs/acre
 - Final stand 10-15 plants/ft²
- Fiber
 - 40-80 lbs/acre
 - Final stand 30-35 plants/ft²

Hemp Grain and Fiber Production

 Produced more like conventional grain and forage production

• Markets are scarce

Seeds and Plants

- Grain & Fiber male & female seeds
- CBD
 - male & female seed
 - feminized seed
- CBD Clones
 - female plants
- CBD Starts
 - Gender typed
 - Mixed male & female plants

Hemp Seed Oil

- 30% protein, 25% starch, 30% oil
- 90% polyunsaturated oils
- High in omega-3 fatty acids
- Food, fuel, cosmetics, etc.
- Cake used for food and animal feed

Planting Date Study

- Most success after Memorial Day
- 2023
 - Planted
 - May 15, June 1, June 15, July 1

Hemp Fibers

• Bast

- Outer fibers
- Textiles
- Clothing
- Hurd
 - Inner fiber
 - Woody
 - Construction materials

Grain (seed harvest)

- Harvest
 - Modern combine
 - Top 1/3 of plant for seed
 - 70-90% seed head maturity
 - Seed at 10-20% moisture
 - Wrapping may occur at drier levels

Hemp Production

Drying

- Minimal Heat
 - 150°F first half of drying
 - 120°F for rest of drying
- Air dry
 - Recommended if at lower levels

Yield

Seed 800 to 1800 pounds/acre

Fiber 2-5 tons/acre

Division of Extension Research

Essential Oils

- 2019-2020
- Oregon State University
 - Buffalo County
- Female plants only

Chippewa Plots – Sandy Loam Soils

Variety differences

Variety Evaluation - Midwest

Variety Evaluation – Local data

Variety Evaluation – Chippewa County Fiber Yield

Industrial Hemp Dry Matter Stem Yields 3 2.5 2 Yield tons DM/acre 1.5 1 0.5 0 Vega CFX2 CRS1 IH William NWG4113 NWG4000 Blue Arrow Green Arrow

Variety

Variety Evaluation – Midwest

Variety Evaluation – Local data

Variety Evaluation – Chippewa County Grain (2023)

Nitrogen Rate Effect on Hemp Fiber Yield

Nitrogen Rate Effect on Hemp Grain Yield

Hemp as Forage Ingredient

- Popular cattle feed
- Short growing season
- Planned or emergency forage
- Generally harvested at flower

Preliminary data

- Three locations
 - Chippewa County
 - Buffalo County
 - Ho-Chunk Nation

2021	Variety	Height (inches)	% DM	DM/ acre (tons)	Crude Protein (%)	TDN (%)
ZUZI	Futura 75					
	Buffalo	63	24.34	2.6	NA	NA
	Chippewa	50	19.47	3.1	17.56	58.00
	Monroe	88	20.20	4.9	20.25	58.81
	Tiborszallasi					
	Buffalo	80	21.25	3.5	NA	NA
	Chippewa	65	21.11	3.8	18.45	60.04
 One replication at each location 	Monroe	86	20.98	6.5	14.50	56.41
one replication at cach location	Secuieni Jubileu					
	Buffalo	65	23.18	2.5	NA	NA
	Chippewa	43	23.32	2.0	20.36	61.02
	Monroe	92	21.68	2.4	15.70	56.85
	Felina 32					
 Some varieties more mature 	Buffalo	58	20.78	2.8	NA	NA
	Chippewa	47	20.99	3.5	22.69	62.35
than others	Monroe	72	21.73	4.0	15.80	55.66
	Henola					
	Buffalo	57	23.50	2.4	NA	NA
	Chippewa	40	24.47	2.8	19.04	60.00
	Monroe	78	20.49	1.8	15.10	54.64
	Bialobrzeskie					
	Buffalo	64	22.28	22	NA	NA
	Chippewa	48	22.01	2.6	17.71	58,90
	Monroe	77	22.06	4 1	17 20	56 76
	Ferimon		22.00			00.70
	Buffalo	63	21 72	27	NA	NA
	Chippewa	49	19.47	2.5	21 10	58 47
	Monroe	72	22.67	3.9	12.2	55 23
	Fibror 79	12	22.01	0.0	16.6	00.20
	Buffolo	77	10.22	2.1	NA	NIA
	Chippewa	45	16.58	2.1	19.67	57.43
	Monroe	70	17.04	2.1	20.2	55 40
	wonroe	79	17.04	3.3	20.2	55.40

2022 Planting and Harvest Dates

Location	Planting Date	Forage Harvest Date	Days to Harvest
Buffalo	June 18	August 5	48
Chippewa	June 14	August 1	48
Whirling Thunder	June 21	August 2	42

2022 Forage Yield

• 27 varieties

- Drier soil conditions
- Three locations

2022 Forage Quality

	Yield	Crude					
	Tons	Protein	ADF	andro	NUFUS		
Variety	d.m./acre	%	%	m %	0	ADF %	RFQ
Bialobrzeske Buffalo Chippewa Wh. Thunder	2.7 1.2 1.7	12.4 11.3 14.9	48.2 45.6 46.7	50.3 50.2 50.3	45.6 44.9 51.9	51.3 53.4 52.5	110 109 122
Carmenecta Chippewa Wh. Thunder	1.3 1.7	15.1 17.7	43.3 38.7	47.9 41.5	40.3 46.5	55.2 58.8	108 139
CRS-1 Buffalo	3.0	11.2	48.2	51.8	43.19	51.4	95
Earlina 8FC Buffalo Chippewa	3.0 1.1	12.2 17.7	48.7 30.1	51.0 33.1	41.9 40.1	50.9 65.4	87 178
Enectarol Chippewa Wh. Thunder	1.2 2.0	14.1 13.8	42.2 39.6	48.6 45.0	42.3 48.4	56.0 58.1	109 131
Felina 32 Buffalo Chippewa Wh. Thunder	3.5 0.9 1.4	14.8 12.5 14.9	47.6 38.7 47.0	51.2 45.4 49.0	44.7 43.2 51.2	51.9 58.8 52.3	105 122 125
Ferimon Buffalo Chippewa Wh. Thunder	2.7 1.1 1.7	9.9 9.6 12.2	52.0 44.3 47.6	53.8 49.5 53.7	42.5 42.3 46.6	48.4 54.4 51.8	95 107 104
Fibror 79 Buffalo Chippewa Wh. Thunder	2.1 0.8 1.0	14.6 14.3 14.8	49.2 44.7 44.1	49.9 49.3 47.9	46.9 45.5 48.3	50.6 54.1 54.6	112 113 123
Futura 75 Buffalo Chippewa Wh. Thunder	4.7 1.2 1.5	10.3 11.1 18.4	51.9 43.1 42.2	56.5 48.9 45.6	45.2 38.7 51.1	48.5 55.4 56.0	91 101 135
Futura 83 Buffalo Wh. Thunder	4.6 2.1	18.4 22.6	42.4 37.6	45.7 37.6	45.3 57.7	55.9 59.6	120 183
Henola Buffalo Chippewa	2.1 0.4	12.0 16.0	46.5 30.3	49.2 35.2	45.9 46.4	52.7 65.3	110 179

	Yield	Crude					
	Tons	Protein	ADF	aNDFom		TDN- ADF	
Variety	d.m./acre	%	%	%	NDFD30	%	RFQ
Henola							
Buffalo	2.1	12.0	46.5	49.2	45.9	52.7	110
Chippewa	0.4	16.0	30.3	35.2	46.4	65.3	179
NWG2463							
Buffalo	2.5	11.3	46.4	47.7	30.8	52.7	83
Chippewa	1.2	12.7	41.5	47.1	49.7	56.6	135
NWG2730							
Buffalo	2.9	11.0	48.0	50.6	13.1	51.5	47
Chippewa	0.9	16.5	40.1	45.2	37.8	57.7	114
NWG4000							
Buffalo	2.8	15.8	46.2	48.3	24.6	52.9	73
Chippewa	1.0	11.8	39.7	44.2	31.8	58.0	108
NWG4113							
Buffalo	4.7	18.5	43.7	50.5	42.0	54.9	104
Chippewa	1.0	12.2	34.4	44.2	39.3	58.9	120
Orion 33							
Wh. Thunder	1.1	22.9	36.4	36.6	52.0	60.6	175
Santhica 70							
Buffalo	2.7	14.0	50.9	54.1	41.6	49.2	86
Wh. Thunder	1.3	13.8	50.7	54.9	49.0	49.4	102
Tiborszallasi							
Buffalo	3.1	13.0	51.6	55.4	40.3	48.7	84
Chippewa	1.0	14.8	43.3	47.3	42.0	55.2	115
Wh. Thunder	1.3	17.9	42.5	46.1	47.3	55.1	125
USO 31							
Wh. Thunder	1.2	17.9	42.5	43.6	48.0	55.8	135
Vega							
Buffalo	2.1	10.9	49.1	50.9	43.5	50.6	101
Chippewa	1.0	12.2	34.4	38.6	Exter	62.1	114
					LINIVERS	TY OF WISCOM	
					ONVERS		

2023 Chippewa County Hemp Forage Yield

2023 Chippewa County Hemp Forage Crude Protein Content

2023 Buffalo County Hemp Forage Yield

Extension UNIVERSITY OF WISCONSIN-MADISON

2023 Buffalo County Hemp Variety Forage Quality

Enterprise Budget Estimate (Fiber)

Expenses	Conventional	Organic
Fertilizer	\$101.90	\$339.25
Seed	\$220.00	\$220.00
Pesticides	\$6.00	\$0.00
Other (land rent, soil testing, permit, etc.)	\$159.45	\$159.45
Total Production Costs	\$437.35	\$718.70
Field Preparation and Planting	\$45.00	\$78.00
Harvest	\$162.25	\$162.25
Storage and Hauling	\$32.50	\$32.50
Total Costs (no return to management)	\$677.10	\$991.45
Breakeven Cost Per Ton (based on 5 ton per acre yield)	\$135.42	\$198.29

Opportunities

- Grows well in Wisconsin
- All types
 - Grain, Fiber, Essential oil
- Pollinator friendly
- Forage potential
- Fast growing
 - Early soil cover
 - Early fiber harvest
 - Cover crop friendly

Challenges

- Market for fiber
- Seed oil market
- Essential oil
 - Market flooded in 2020
- Forage
 - Needs to be legal

• Keeping THC below 0.03%

- Varieties
- Late harvest
- Weather

If above 0.03% THC.....

Support and Sponsors

North Central Region Sustainable Agriculture and Research Education Partnership Grant

Sustainable Agriculture Research & Education

- Triple T Farms
- Ho-chunk Nation
- Joe Bragger
- Chippewa and Buffalo Counties

Questions?

Jerry Clark

Chippewa, Dunn, Eau Claire

Extension UW-Madison

715-726-7955

Jerome.clark@wisc.edu

