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Abstract  
High-throughput sequencing has become a critical tool for studying microbiomes by measuring relative microbiome profiling, 
although this typically overlooks the absolute abundance of microbiomes. Consequently, pathological, physiological, and 
ecological roles of microbial communities may be represented inaccurately. To address this, we estimated absolute abun-
dances of soil microbiomes by combining amplicon sequencing with quantitative PCR. We collected soil samples (0–30 cm) 
at three sampling times (pre-planting, flowering, and maturity) from peanut plots subject to a long-term conventional rotation 
(peanut-cotton-cotton, CR) or sod-based rotation (bahiagrass-bahiagrass-peanut-cotton, SBR). Rotation and sampling time 
were important in shaping microbial communities. Relative to CR, SBR had greater microbial diversity, greater community 
stability, complexity and stability of bacterial-fungal networks, and greater richness and abundance of keystone taxa, which 
may make soil microbiomes more resilient to environmental changes among sampling times. SBR also showed significantly 
greater concentrations of total C and N,  NO3

−-N, resin-extractable P, Mg, Zn, Fe, and Cu, and greater potential N mineraliza-
tion rates and C:N ratios, indicating that SBR’s higher rotational diversity affected soil health in the topsoil. There were more 
significant relationships between soil nutrients and microbial community composition as well as keystone taxa under SBR, 
indicating that higher rotational diversity intensified ecological connections among soil, microbes, and crops. Our results 
suggest that a more complex and stable microbial network with greater richness and abundance of keystone taxa (primarily 
bacterial communities) had critical impacts on nutrient cycling and plant health and fitness under SBR, which are the main 
factors contributing to crop productivity.

Keywords Estimated absolute abundances of microbiomes · Crop rotation · Perennial grass · Temporal dynamics · 
Bacterial-fungal networks · Microbial stability

Introduction 

With an increasing global population and demand for food, 
agricultural systems are undergoing both expansion and 
intensification (Foley et al. 2011; Zhang et al. 2013). It has 
been demonstrated that agricultural expansion and intensifi-
cation have resulted in a wide range of environmental issues, 
including loss of soil biodiversity, soil degradation and ero-
sion, greenhouse gas emissions, and groundwater pollution 
(Tsiafouli et al. 2015; Bender et al. 2016; Campbell et al. 
2017). Alternative farming systems, such as those includ-
ing more diversified crop rotations, have been advocated to 
reduce these detrimental environmental impacts or reverse 
these trends without negative effects on crop productivity 
and soil health (Bommarco et al. 2013; Tiemann et al. 2015; 
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Zhang et al. 2021). Crop rotation increases temporal plant 
diversity by sequentially planting diverse crops on the same 
field over time. Recent studies reported that increasing the 
functional diversity of crops in rotation by integrating crops 
with diverse functional traits (e.g., cover crops and peren-
nial crops) is a more sustainable alternative than rotating 
functionally similar crops to increase crop yield, as greater 
functional diversity can improve soil health while support-
ing diverse soil microbiomes (Faucon et al. 2017; Tamburini 
et al. 2020; Zhang et al. 2022b).

Previous studies in annual cropping systems have 
reported that soil microbial communities are modulated 
by the complex and dynamic interactions between plant 
growth and environmental variables (Hartman et al. 2018; 
Simon et al. 2020; Shen et al. 2021). For example, soil 
microbial community assembly is profoundly regulated 
by plant developmental stages (Wang et al. 2019; Geisen 
et al. 2021). This is partially driven by the substantial yet 
variable fraction (11–40%) of photosynthetically fixed 
C allocated belowground and subsequently exuded by 
plant roots, known as rhizodeposition, that has a cru-
cial influence on soil microbiomes (Eisenhauer et  al. 
2017). The amount and composition of rhizodeposition 
are context-specific and vary with plant developmental 
stage and nutrition, environmental conditions, and other 
factors (Badri and Vivanco 2009; Steinauer et al. 2016). 
However, as variations in plant developmental stages are 
co-occurring with seasonal changes in temperature, pre-
cipitation, and radiation that also profoundly affect soil 
microbial communities directly (Shen et al. 2021), it is 
difficult to separate the effects of plant developmental 
stages from seasonal changes in climate conditions.

The assembly, composition, and stability of soil micro-
biomes are also modulated by biotic interactions (Barberán 
et al. 2012). Complex interactions among the myriad of 
microorganisms can be identified with microbial co-occur-
rence networks that measure the complexity and stability 
of microbiomes, the links between microbe-microbe inter-
actions and ecosystem functioning, and their responses to 
environmental changes (Fuhrman 2009; Faust and Raes 
2012; Morriën et al. 2017; de Vries et al. 2018; Banerjee 
et al. 2019). Still, the mechanisms driving soil microbial 
assembly, stability, and interactions along plant developmen-
tal stages under different long-term agricultural practices 
remain largely unknown. This knowledge gap is critical 
given that a better understanding of temporal dynamics in 
soil microbial assembly, interactions, and functions could 
help develop microbial-based approaches for sustainable 
agriculture (Haskett et al. 2020; D’Hondt et al. 2021).

Given the tight association between soil microbiomes and 
microbial functioning, changes in soil microbial communi-
ties significantly affect the availability of C and nutrients 
in addition to soil health (Paul 2014; Crowther et al. 2019). 

Soil chemical properties that can be quantified rapidly and 
are responsive to changes in agricultural management are 
often used to determine the effects of soil microbiomes on 
nutrient availability and soil health, such as permanganate 
oxidizable C (POXC), soil protein, and Mehlich-extracted 
elements (Hurisso et al. 2018a). For example, POXC serves 
as a reservoir of biologically available C, including micro-
bial biomass, that is sensitive to agricultural management 
(Culman et al. 2012). Soil protein is an operationally defined 
soil N pool that is used as an indicator of mineralizable N 
and estimates the amount of soil organic matter compounds 
containing organic N (Nannipieri and Paul 2009). Soil pro-
tein was found to show a strong response to management 
practices such as tillage and rotational diversity (Moebius-
Clune et al. 2008; Hurisso et al. 2018b). As soil nutrient 
availability affects plant performance directly (Berendsen 
et al. 2012), measuring the temporal variability in nutrient 
availability across plant developmental stages and seasonal 
changes in climate can help better understand the linkages 
among soil microbiomes, soil health, and crop productivity.

With the rapid advancement in omics techniques, such 
as high-throughput molecular technologies, affordable 
amplicon sequencing has been widely adopted to analyze 
microbial community profiling (Almeida and Shao 2018). 
Although this method provides important insights into the 
diversity and composition of microbial communities, it 
is inherently limited by the fact that it calculates the rela-
tive abundance of taxa rather than the actual abundance 
of the population (Widder et al. 2016). Props et al. (2017) 
reported that the relative abundance of a taxon and its abso-
lute abundance were not necessarily related. It is possible 
that a microbial group could show an upward trend in abso-
lute abundance while decreasing relative abundance in a 
given environment, and vice-versa. In this scenario, relative 
microbiome profiling may mask the underlying pathological, 
physiological, and ecological roles of microbial communi-
ties (Tkacz et al. 2018), as these are typically driven by the 
absolute abundance of soil microbes. Accordingly, without 
absolute microbiome profiling (AMP), it is difficult to sys-
tematically and holistically understand the spatio-temporal 
dynamics of microbial abundance and how microbes affect 
ecosystem functions, in addition to their responses to envi-
ronmental changes and anthropogenic disturbances (Tkacz 
et al. 2018; Guo et al. 2020b; Tettamanti Boshier et al. 
2020). Thus, quantifying absolute abundances of microbial 
communities should improve our ability to determine the 
extent to which soil microbiomes affect nutrient dynamics 
and further contribute to crop performance and productivity 
in agroecosystems.

In this study, we determined the relative and estimated abso-
lute abundances of soil microbial communities using amplicon 
sequencing and quantitative PCR (qPCR), respectively, in agro-
ecosystems with different crop rotation systems and irrigation 
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regimes. Our main objectives were to (1) compare AMP and 
microbial community stability under different irrigation regimes 
and crop rotation systems at various sampling times; (2) uncover 
the temporal dynamics of bacterial-fungal networks and their 
ecological roles in different crop rotation systems; and (3) iden-
tify the mechanisms through which soil microbial communities 
affect soil health and crop performance and productivity under 
different crop rotation systems. We hypothesized that (1) sam-
pling time would have stronger effects on soil microbial com-
munities under conventional rotation (peanut-cotton-cotton, CR) 
relative to sod-based rotation (bahiagrass-bahiagrass-peanut-
cotton, SBR); (2) SBR would enhance the complexity of soil 
microbial networks and associated agroecosystem functions 
across different sampling times; and (3) SBR would improve 
soil health and crop productivity by assembling more diverse 
and abundant keystone taxa compared to CR.

Materials and methods

Experiment site and design

This field trial was initiated in 2000 at the North Florida 
Research and Education Center, Quincy, Florida (30° 32.79’ 
N, 84° 35.50’ W), on a soil mapped as a Dothan sandy loam 
(fine-loamy, kaolinitic, thermic Plinthic Kandiudult) (Zhao 
et al. 2010). The experiment compares two rotation systems: 
a peanut (Arachis hypogaea L. cv. Georgia Green)-cotton 
(Gossypium hirsutum L. cv. Deltapine® 1646)-cotton rota-
tion (conventional rotation, CR) and a bahiagrass (Paspalum 
notatum Flugge cv. Pensacola)-bahiagrass-peanut-cotton rota-
tion (sod-based rotation, SBR). Each crop phase within these 
two rotations is considered as a treatment; there are there-
fore three crop treatments for CR and four crop treatments 
for SBR. An oat (Avena sativa L. cv. Florida 501) cover crop 
is planted after harvesting cotton and peanut in both rota-
tions as well as after the second year of bahiagrass in SBR. 
The study is set up as a randomized complete block design 
combined with a split-plot arrangement. All crop phases of 
two rotations (main plots) are presented each year in each of 
three blocks, in 128 × 45.7  m2 plots, with irrigated (irrigation 
and precipitation) and rainfed (precipitation only) treatments 
(split plots). Irrigated split plots received 3 cm of water every 
week. All crops were planted using conservation tillage (strip 
tillage). Additional details of field setup, fertilization, and site 
maintenance can be found in Zhang et al. (2022b).

Weather data (soil temperature, precipitation, and solar 
radiation) were exported from the Florida Automated 
Weather Network (https:// fawn. ifas. ufl. edu/) that maintains 
a weather station at the experimental site and are shown in 
Table S1.

Soil and peanut sample collection

Peanut (cv. Georgia Green) was seeded with a row spacing 
of 91 cm and depth of 2.5 cm at 20 seeds  m−1 on 9 May 
2019. Soil samples (0–30 cm depth) were collected from the 
two center rows of each subplot (roughly 8 cm away from 
plants) using an Oakfield tube at pre-planting (19 January 
for soil chemical properties vs. 18 March for soil microbial 
analyses), flowering (21 June), and maturity (5 October) 
stages during the 2019 growing season. Twelve soil cores 
(diameter = 2 cm) were collected per subplot and mixed to 
get a composite soil sample. In total, there were 36 sam-
ples (2 peanut phases × 2 irrigation conditions × 3 sampling 
times × 3 replicates). A subsample was kept at 4 °C until 
analysis for soil chemical properties, whereas another sub-
sample was sieved through a screen with 0.64-cm apertures 
and then transferred to 2-ml Eppendorf tubes before storage 
at − 80 °C for microbial analyses.

Peanut was harvested on 6 October (optimum pod matu-
rity) using a 5000 Express peanut picker (Gregory Manufac-
turing Co., Lewiston Woodville, NC) from the designated 
harvest rows of each subplot. After fresh peanuts were 
weighed (two weights per subplot), pod sub-samples from 
each subplot were placed in a forced-air dryer at 45 °C for 
72 h. Final peanut yields are reported on a dry weight basis 
adjusted to 10% moisture.

Soil chemical properties

Within 72 h of collection, fresh soils were extracted for N and 
P. A laboratory incubation was used to determine potential 
N mineralization (PNM). Specifically, 8 g of field-moist soil 
from each plot was incubated in an incubator for 28 days (Allar 
and Maltais-Landry 2022), using an incubation temperature 
that matched the soil temperature observed at the field site 
(Table S1). Before incubation, sample moisture was adjusted to 
20% of total weight using double-distilled water, and moisture 
adjustments were performed weekly. Soil extractable  NH4

+–N 
and  NO3

−–N before and after incubation were extracted with 
2.0 M KCl using a 1:5 (w/v) soil-to-solution ratio (Kemmitt 
et al. 2005) and then analyzed for  NH4

+–N (Weatherburn 
1967) and  NO3

−–N (Doane and Horwáth 2003) by colorimetry 
using an Epoch 2 microplate reader (Biotek, Winooski, VT). 
PNM was calculated according to this formula:

Resin-extractable P of fresh soil samples was measured 
using anion-exchange resins (Tiessen and Moir 2007). Briefly, 
2.5 g of soil samples was extracted with moist resin strips satu-
rated with  NaHCO3 and 35 mL of double distilled water on a 

PNM
(

mg N kg−1d−1
)

=
((

NH+
4
− N + NO−

3
− N

)

final
−
(

NH+
4
− N + NO−

3
− N

)

initial

)

∕28 days

https://fawn.ifas.ufl.edu/
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reciprocal shaker for 16 h. After shaking, P was eluted from 
the resin using 0.5 M HCl for 1 h, and P concentration was 
determined by colorimetry using the molybdate blue method 
(Tiessen and Moir 2007).

After samples were processed for extractable N and P on 
fresh soils, the remaining soil samples were air-dried and 
sieved to 2 mm. Autoclaved Citrate-Extractable soil protein 
and soil permanganate oxidizable C (POXC) were determined 
using the methods of Hurisso et al. (2018a). A soil subsample 
was sent to Waters Agricultural Laboratories, Camilla, Geor-
gia, USA, for analysis of soil pH (1:1 soil-to-water ratio), total 
C (TC) and total N (TN) with a LECO EPS-2000 CNS thermal 
combustion furnace (LECO Corp., St Jose, MI, USA), and 
soil elements (P, K, Ca, Mg, S, B, Zn, Mn, Fe, and Cu) with 
Mehlich III extraction (M3) (Mehlich 1984) and quantifica-
tion by inductively coupled plasma spectrometry (Agilent 157 
5110 ICP-OES).

DNA extraction and quantitative PCR

Soil DNA was extracted from 0.5 g soil using the DNA Pow-
erSoil kit (MoBio, Carlsbad, California, USA) following the 
manufacturer’s instructions. Before the DNA concentration 
of each sample was assessed by spectrophotometry (Nan-
oDrop™, Thermo Fisher Scientific, Thermo Scientific™), 
extracted DNA samples were cleaned up using AMPure XP 
beads to remove contaminants, including PCR inhibitors. After 
diluting DNA samples ten times, the absolute abundance of 
bacteria and fungi was determined on the Bio-Rad CFX96 
Real-Time System (Bio-Rad Laboratories, Inc., California, 
USA) using primer sets 341F/806R and ITS1F/ITS4, respec-
tively (Brabcová et al. 2016; Trivedi et al. 2016). Each reaction 
contained 10 μl mixture, including 5 μl SsoAdvanced Uni-
versal SYBR Green Supermix (2X), 0.3 μl (10 μM) forward 
and reverse primers, 1 μl DNA template, and 3.4 μl nuclease-
free  H2O. Thermal cycling conditions were as follows: 30 s at 
98 °C, then 40 cycles (to completely detect absolute microbial 
abundance) of 98 °C for 15 s and 60 °C for 30 s. Melting curve 
analysis was performed at the end of each real-time quantita-
tive PCR (qPCR) by increasing temperature from 65 to 95 °C 
at 0.1 °C  s−1 to check the specificity of amplification products. 
Amplification efficiency was calculated based on the slopes of 
individual amplification plots to check for PCR inhibition. All 
samples and calibration reactions were run with three technical 
replicates that showed high reproducibility and low variability 
among technical replicates.

Sequencing for soil microbial communities 
and bioinformatics

The V3-V4 region of bacterial 16S rRNA gene (341F/806R 
primer mixture) and the ITS1-ITS2 region of fungal ITS 
gene (ITS1/ITS4 primer mixture) were amplified using 

a modified two-step PCR on a C1000 Touch™ Thermal 
Cycler (Bio-Rad, Oxfordshire, UK) (Chen et al. 2021). 
Reverse primers were tagged with sample-specific 10-bp 
barcode oligonucleotides to distinguish the amplicons from 
different samples. All products from each PCR step were 
purified with the bead-cleanup approach (AMPure-XP, 
Beckman Instruments, Brea, CA, USA). To alleviate the 
sequencing bias caused by added primers and sequenc-
ing adaptors, we set 15 PCR cycles for each of our two-
step PCR. The quantity and quality of final PCR products 
were determined by a NanoDrop spectrophotometer (Nan-
oDrop™, Thermo Fisher Scientific, Thermo Scientific™, 
Wilmington, DE, USA) and screening using 1% (w/v) aga-
rose gels, respectively. During each step, we used negative 
controls (i.e., nuclease-free water) to confirm that there 
was no contamination present. After all amplicons were 
pooled in equimolar concentrations (10 ng μl−1) in a sin-
gle tube, the mixture was sequenced on an Illumina (Illu-
mina Inc., San Diego, CA, USA) Miseq instrument (v3 
300 bp, 13 Gb sequencing capacity) at the Duke Center for 
Genomic and Computational Biology. The raw sequence 
data were deposited in the NCBI Sequence Read Archive 
under Study PRJNA815056.

16S and ITS raw sequences were processed using Quan-
titative Insights into Microbial Ecology (QIIME) 2.0 stand-
ard operation procedure (Bolyen et al. 2019). Low-quality 
sequences (Phred quality score Q < 20 or a length shorter 
than 220 bp) were discarded using “data2.py” after remov-
ing barcodes from each sample. The remaining high-quality 
sequences were clustered into operational taxonomic units 
(OTUs) at 99% identity using “vsearch.py”. Bacterial and 
fungal OTUs were taxonomically assigned with Greengenes 
(Version 2018) and UNITE databases (Version 8) with a 
confidence value greater than 0.7, respectively, using “fea-
ture-classifier.py”. Overall, 4,113,626 (mean of 114,267 per 
sample) bacterial and 3,212,172 (mean of 89,227 per sam-
ple) fungal high-quality reads were obtained and assigned 
to 14,629 and 5,377 OTUs, respectively. The estimated 
absolute abundance of each OTU within each sample was 
calculated as the product of its relative abundance and the 
total absolute 16S/ITS gene copy numbers based on the con-
clusion of Zhang et al. (2022c), who found that this method 
has higher stability and technical feasibility compared to the 
spike-in method. Finally, OTUs that were assigned to chloro-
plast, mitochondrial, and viridiplantae in the bacterial OTU 
table in addition to unidentified sequences in both bacterial 
and fungal OTU tables were removed.

Network analysis

Microbial co-occurrence networks were constructed using 
Spearman correlations (package: psych, function: corr.
test) in R (version 4.0) (Hector 2015; Xia et al. 2018). 
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Robust correlations were selected using a threshold of 
r >|0.77| and P value < 0.05, after adjustments with the 
Benjamini–Hochberg procedure to reduce the occurrence 
of false-positive results (Benjamini and Hochberg 1995). 
Networks were visualized in the Gephi software (Bastian 
et al. 2009). More complex soil networks were defined 
to have a greater number of nodes and edges, average 
degree, clustering coefficient (the degree of a node 
closely connected with neighboring ones), and closeness 
centrality (the central importance of a node in disseminat-
ing information), but lower values for betweenness cen-
trality (the number of times a node acts as a bridge along 
the shortest path between two other nodes) and average 
path length (Qiu et al. 2021; Jiao et al. 2022). Nodes with 
either a high value of Zi (|Zi|> 2.5) or Pi (|Pi |> 0.62) were 
considered as potential keystone taxa given their critical 
role in network topology (Shi et al. 2016). The traits of 
keystone taxa were predicted by FAPROTAX for bacte-
rial nodes (Louca et al. 2016) and FungalTraits for fungal 
nodes (Põlme et al. 2020). Linear regression models were 
performed to test the relationships between the abundance 
of keystone taxa and nutrient dynamics, and P values 
were adjusted by the Bonferroni-Holm method in R.

Statistical analyses

All statistical analyses were performed in R (version 
4.0). After the estimated abundance of bacterial and 
fungal OTUs was rarefied based on the lowest abun-
dance across all samples (11,008,350 copies for bacte-
ria, 17,031,060 copies for fungi), the alpha diversity of 
bacterial and fungal communities was calculated with 
the Shannon index (package: vegan, function: diver-
sity). Dissimilarities among treatments (beta diversity) 
were visualized using a principal coordinate analysis 
(PCoA) with Bray–Curtis dissimilarity distances (pack-
age: vegan, function: monoMDS) (Zhang et al. 2017, 
2020a). Permutation multivariate analysis of variance 
(PERMANOVA) was used to assess the effects of irriga-
tion, rotation, and sampling time on soil bacterial and 
fungal community composition (package: vegan, func-
tion: adonis). A partial Mantel test based on 999 per-
mutations was performed to test the effects of weather 
variables and soil properties on the diversity and com-
position of microbial communities (package: vegan, 
function: mantel.partial). The average variation degree 
(AVD) method was applied to calculate the degree of 
deviation in the abundance of normally distributed 
OTUs across replicated soil samples (Xun et al. 2021), 
and we used the stability index (1-AVD) to represent 
soil microbial community stability. The main soil chem-
ical and weather predictors for microbial community 
stability were identified with a Random Forest analysis 

(Trivedi et  al. 2016). Percentage of increases in the 
mean squared error (MSE) for each variable was used to 
identify the importance of each predictor; higher values 
of MSE% indicate a more important variable (Breiman 
2001). The significance of the model was evaluated with 
5000 permutations of the response variable (package: 
A3; function: a3) (Fortmann-Roe and Others 2015).

A three-way ANOVA was used to examine the effect of 
irrigation, rotation, and sampling time on microbial alpha 
diversity, microbial abundance, stability index of microbial 
communities, and soil chemical properties. Shapiro–Wilk 
(package: dplyr, function: shapiro.test) and Levene (pack-
age: car, function: levene.test) tests were used to verify 
the normality of residuals and homogeneity of variance for 
each variable, respectively (Gastwirth et al. 2009; Hanusz 
and Tarasińska 2015). Variables where assumptions of 
normality were violated were log-transformed to achieve 
normality. If the interaction (i.e., rotation by sampling 
time or irrigation by sampling time) in the ANOVA was 
significant, significant differences among sampling times 
within the irrigated/rainfed condition or the CR/SBR rota-
tion were determined using a Tukey’s HSD test (package: 
agricolae, function: HSD.test), and rotation/irrigation 
effects for each sampling time were determined with a 
t-test. If the main effects (i.e., rotation and sampling time) 
were significant, differences between CR and SBR were 
determined with a t-test after pooling irrigation and sam-
pling times, and differences among sampling times were 
determined using a one-way ANOVA followed by a Tukey 
HSD post hoc test after pooling irrigation and rotation. All 
results were considered significant when P < 0.05, while 
results with 0.05 < P < 0.1 were considered as “marginally 
significant”.

Partial least squares path modeling (PLS-PM) was 
used to evaluate cascading relationships among irrigation, 
weather changes, microbial attributes (abundance, diver-
sity, composition, and community stability), microbial net-
works (complexity and keystone taxa), soil chemical prop-
erties, and peanut yield under different rotation systems 
(Barberán et al. 2014). PLS-PM is a powerful statistical 
tool that is applied in non-normally distributed data with 
a small sample size to study cause and effect relationships 
between manifest and latent variables (Tenenhaus et al. 
2005; Barberán et al. 2014). The description of manifest 
and latent variables and the construction of models are 
detailed in the supplementary information (Supplemen-
tary information – Methods). After constructing several 
conceptual models with latent and manifest variables 
(package: plspm, function: plspm), the optimal model was 
determined to be the model with the highest determination 
coefficient  (R2 > 0.60), goodness of fit index (GoF > 0.50), 
and redundancy index (Mean Redundancy > 0.60) after 
1000 bootstraps (Trivedi et al. 2016).
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Results

Weather and edaphic properties at different 
sampling times

Mean soil temperature (27.3 °C) and total precipitation 
(18.2 cm) were highest at maturity, followed by flow-
ering (24.5 °C and 13.2 cm) and pre-planting (17.2 °C 
and 7.3 cm; Table S1). However, mean solar radiation 
was highest at flowering (242.7 w/m2) and lowest at pre-
planting (189.6 w/m2). Most soil chemical properties were 
affected by sampling time, rotation, and/or their interaction 
(Tables 1 and S2). For example, under CR, POXC, C:N, 
 NO3

−–N, protein, and resin P were lowest at pre-planting 
and peaked at flowering. The same trend was found for 
 NO3

−–N under SBR, while concentrations of POXC and 
resin P, as well as C:N ratio, peaked at maturity instead 
of flowering; there was no significant effect of sampling 
time for protein in SBR. We also found significantly 

higher POXC and resin P under CR than SBR at flower-
ing, whereas protein (pre-planting),  NO3

−–N (flowering), 
and C:N (maturity) were higher under SBR than CR. In 
addition, TC, PNM, M3 Zn, and Fe were higher while M3 
K and Mn were lower under SBR relative to CR irrespec-
tive of sampling time. Sampling time significantly affected 
several variables (P < 0.05): M3 S, B, and Zn were highest 
at pre-planting; M3 P, K, Mn, Fe, and Cu were highest at 
flowering; and PNM was highest at maturity. Compared to 
rotation and sampling time, irrigation only had a margin-
ally significant interaction with rotation for M3 K and a 
significant main effect for TN (Table S2).

Microbial abundance, diversity, and community 
composition in the soil

Sampling time had a significant main effect on the esti-
mated absolute abundance of bacteria, with greater abso-
lute bacterial abundance at maturity relative to pre-planting 

Table 1  Soil chemical properties (mean ± standard error) under different sampling times and rotations

POXC, permanganate oxidizable C; TC, total C; TN, total N; PNM, potential N mineralization rate; M3, extracted with Mehlich III; CEC, cation 
exchange capacity; BS, base saturation. Lowercase and uppercase letters indicate a significant difference among developmental stages under CR 
and SBR, respectively, determined by a Tukey’s HSD test. Values marked in bold show a significant difference between CR and SBR within 
each sampling point, determined by a t-test. ***, **, *, and † represent the significance at P < 0.001, 0.01, 0.05, and 0.1, respectively. N.S. indi-
cates no significant effects. Statistical analysis of soil properties is shown in Table S3

Pre-planting Flowering Maturity ANOVA

CR SBR CR SBR CR SBR

pH 6.0 ± 0.1 6.0 ± 0.1 5.8 ± 0.1 5.8 ± 0.1 5.9 ± 0.1 5.9 ± 0.1 N.S
POXC (mg  kg−1) 220 ±  14c 198 ±  19B 381 ± 21a 236 ± 15AB 272 ±  24b 246 ±  6A Time × rotation***
TC (%) 1.10 ± 0.04 1.18 ± 0.06 1.21 ± 0.02 1.26 ± 0.05 1.13 ± 0.02 1.29 ± 0.03 Rotation***
TN (%) 0.22 ± 0.01 0.23 ± 0.01A 0.23 ± 0.01 0.24 ± 0.01A 0.22 ± 0.01 0.21 ± 0.01B Time ×  rotation†

C:N 4.9 ± 0.1 5.1 ± 0.3B 5.3 ± 0.2 5.4 ± 0.1B 5.1 ± 0.12 6.2 ± 0.1A Time × rotation*
PNM (mg  kg−1  d−1) -0.02 ± 0.01 -0.02 ± 0.01 0.06 ± 0.11 0.35 ± 0.02 0.17 ± 0.01 0.32 ± 0.02 Time**; rotation*
NH4

+ -N (mg  kg−1) 0.4 ± 0.1 0.7 ± 0.1 0.5 ± 0.1 0.1 + 0.02 0.3 ± 0.1 0.4 ± 0.1 N.S
NO3

−-N (mg  kg−1) 0.1b 0.6 ± 0.1C 11.0 ± 2.0a 19.4 ± 0.9A 7.0 ± 0.3a 10.0 ± 1.4B Time × rotation *
Protein (mg  kg−1) 1721 ± 108b 2393 ± 201 2905 ±  148a 2693 ± 81 2739 ±  137a 2566 ± 65 Time × rotation**
Resin P (mg  kg−1) 3.2 ± 0.8c 5.4 ± 1.1B 13.8 ± 1.8a 8.8 ± 0.8AB 9.0 ± 1.3b 9.9 ± 0.6A Time × rotation**
M3 P (mg  kg−1) 28 ± 3 30 ± 6 45 ± 5 41 ± 2 35 ± 1 36 ± 2 Time**
M3 K (mg  kg−1) 134 ± 7 100 ± 12 144 ± 5 116 ± 10 122 ± 6 90 ± 5 Time*; rotation***
M3 Ca (mg  kg−1) 701 ± 70 644 ± 23 630 ± 27 674 ± 39 624 ± 40 646 ± 17 N.S
M3 Na (mg  kg−1) 5.9 ± 0.3 5.8 ± 0.2 7.3 ± 0.8 7.8 ± 1.5 6.8 ± 0.6 6.1 ± 0.2 N.S
M3 Mg (mg  kg−1) 129 ± 7 131 ± 11 112 ± 11 128 ± 4 121 ± 10 131 ± 4 Rotation†

M3 S (mg  kg−1) 28 ± 5 20 ± 2 15 ± 1 14 15 ± 3 12 ± 1 Time**
M3 B (mg  kg−1) 0.3 ± 0.01 0.3 ± 0.01 0.2 ± 0.02 0.2 ± 0.01 0.2 ± 0.02 0.2 ± 0.01 Time*
M3 Zn (mg  kg−1) 5.5 ± 1.1 6.8 ± 0.4 2.7 ± 0.4 3.9 ± 0.6 1.6 ± 0.3 2.7 ± 0.2 Time***; rotation*
M3 Mn (mg  kg−1) 36 ± 3 29 ± 2 41 ± 2 38 ± 2 40 ± 1 33 ± 2 Time**; rotation**
M3 Fe (mg  kg−1) 54 ± 4 64 ± 6 69 ± 4 77 ± 3 66 ± 2 70 ± 2 Time**; rotation*
M3 Cu (mg  kg−1) 0.2 ± 0.02 0.2 ± 0.02 3.6 ± 1.0 6.1 ± 1.5 0.2 ± 0.05 0.2 ± 0.01 Time***
CEC (meq/100 g) 8.2 ± 0.3 7.8 ± 0.1 7.4 ± 0.2 8.0 ± 02 7.7 ± 0.2 7.9 ± 0.2 N.S
BS (%) 60 ± 3 59 ± 2 60 ± 2 59 ± 3 58 ± 3 58 ± 1 N.S
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and flowering (three-way ANOVA; P < 0.001; Fig. S1A; 
Table S3). There was a marginally significant interaction of 
irrigation by sampling time on absolute fungal abundance 
(P = 0.07; Fig. S1B; Table S3). Absolute fungal abundance 
was significantly greater at maturity compared to other sam-
pling times under rainfed conditions (P < 0.05), whereas 
there was no difference among sampling times under irri-
gated conditions. In addition, absolute fungal abundance 
was greater in rainfed conditions (P < 0.05) at maturity but 
unaffected by irrigation at other sampling times. However, 
there was no significant effect of rotation on absolute abun-
dance of bacteria and fungi (Figs. S1A and B; Table S3). 
By combining amplicon sequencing with qPCR, we deter-
mined the estimated absolute abundance of microbial taxa 
(Figs. 1A and B). Among the top 15 microbial classes, Alp-
haproteobacteria and Bacilli were the most dominant bacte-
rial groups, with over 1.2 ×  107 copies  g−1 soil, while the 
most dominant fungal taxa were Sordariomycetes (5.1 ×  107 
copies  g−1 soil) and Dothideomycetes (2.4 ×  107 copies  g−1 
soil) across all samples.

The bacterial Shannon index was significantly greater 
at pre-planting and flowering than at maturity, and rotation 
had a significant main effect for both bacterial and fungal 
alpha diversity (P < 0.05), with significantly greater micro-
bial alpha diversity in SBR compared to CR (Figs. 1C and 
D; Table S3).

PCoA plots of Bray–Curtis distances and PERMANOVA 
analyses revealed that irrigation, rotation, and sampling time 
significantly affected bacterial community composition 
(P < 0.05), with no significant interactions (Table 2; Fig. 1E). 
Compared to irrigation  (R2 = 0.05), rotation  (R2 = 0.09) and 
sampling time  (R2 = 0.10) had stronger effects on bacterial 
community composition, although all these effects were 
relatively weak (Table 2). In contrast, fungal community 
composition was significantly affected by sampling time 
and rotation (P < 0.001; Table 2; Fig. 1F), with a marginally 
significant interaction between these two factors (P = 0.09). 
Both factors  (R2 ~ 0.15) had similar effects on fungal com-
munity composition, and a stronger impact on fungal relative 
to bacterial community composition.

The effects of environmental factors on soil 
microbial communities

Given that weather variables and most soil chemical prop-
erties varied in response to sampling time and/or rotation, 
we used a partial Mantel test to identify the main variables 
driving the variation in microbial community composition 
and diversity (Figs. 2A and B). Weather variables (i.e., mean 
soil temperature, total precipitation, and mean radiation) 
significantly affected both bacterial and fungal community 
composition under CR (P < 0.05; Fig. 2A), whereas only 
bacterial community composition was significantly affected 

by mean soil temperatures and total precipitation under SBR 
(Fig. 2B). In CR (Fig. 2A),  NO3

−–N, protein, and M3 Zn 
induced significant changes in bacterial and fungal commu-
nity composition, whereas TN and M3 S affected only bac-
terial and fungal community composition, respectively. In 
contrast, bacterial and fungal diversity were only associated 
with TN and M3 Na, respectively. Under SBR (Fig. 2B), a 
greater number of soil chemical properties had significant 
links to both bacterial and fungal community composition 
(TN, M3 K, B, and Zn), only bacterial community composi-
tion (POXC, TC,  NO3

−–N, protein, resin P, M3 Mg and Fe), 
or only soil fungal community composition (M3 S). Perman-
ganate oxidizable C and resin P were associated with bacte-
rial diversity, whereas no chemical properties were linked to 
fungal diversity in SBR. Compared to microbial community 
composition, microbial diversity had fewer links with soil 
chemical properties, irrespective of rotation systems.

Microbial co‑occurrence network and keystone taxa

Bacterial and fungal co-occurrence networks were con-
structed based on Spearman correlations among OTUs to 
investigate microbial inter-connections at different sampling 
times under CR and SBR, respectively (Fig. 3A). We found 
that rotation strongly affected the topological properties of 
bacterial-fungal co-occurrence patterns. Specifically, SBR 
showed a significantly greater average degree, clustering 
coefficient, and closeness centrality, but lower between-
ness centrality than CR across all sampling times (P < 0.05; 
Figs. 3B–E), suggesting that SBR led to a more complex soil 
microbial community than CR. SBR had a greater number 
of edges between bacteria and fungi and a lower percent-
age of positive correlations than CR at each sampling time, 
especially at flowering and maturity (Table 3). Similarly, 
sampling time affected multiple topological properties of 
bacterial and fungal co-occurrence patterns (Table 3). For 
example, total number of nodes and bacterial nodes, edges 
within bacteria, average degree, and modularity were highest 
at maturity, irrespective of rotation systems.

According to within-module connectivity (Zi) and among-
module connectivity (Pi), nodes played a different role in bac-
terial and fungal networks at different sampling times (Fig. 
S2). Under CR, we detected the following module hubs, which 
represent keystone taxa: 8 at pre-planting (6 bacterial and 2 
fungal nodes), 7 at flowering (5 bacterial and 2 fungal nodes), 
and 17 at maturity (15 bacterial and 2 fungal nodes) (Fig. 4A). 
In SBR, there was 5 (3 bacterial and 2 fungal nodes), 23 (18 
bacterial and 5 fungal nodes), and 15 (14 bacterial and 1 fungal 
nodes) module hubs at pre-planting, flowering, and maturity, 
respectively (Fig. 4B). Although CR had a slightly greater 
number of keystone OTUs at pre-planting and maturity, the 
cumulative estimated absolute abundance of keystone taxa was 
greater in SBR at flowering and maturity (Figs. S3A and B). 
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Furthermore, keystone taxa were assigned to more microbial 
phyla and genera in SBR (12 phyla and 34 genera) than CR 
(10 phyla and 23 genera; Figs. S3A and B).

As keystone taxa in SBR were predicted to be involved in 
C and nutrient cycling (e.g., N, S, and Fe; Fig. S3C), linear 
models were developed to determine the association between 
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the abundance of keystone taxa and soil chemical properties 
(Fig. S3D). The abundance of keystone taxa under SBR was 
positively related to POXC, C:N ratio,  NO3

−–N, and resin 
P (Figs. 4C to 4G;  R2 = 0.25 to 0.40, P = 0.007 to 0.041), 
but negatively related to M3 S, B, and Zn (Figs. 4H to 4J; 
 R2 = 0.29 to 0.65, P < 0.001 to P = 0.032). In CR, only PNM 
was significantly and positively related to the abundance of 
keystone taxa (Fig. 4F;  R2 = 0.28, P = 0.02).

Microbial community stability

The stability index of bacterial communities was significantly 
affected by the sampling time by rotation interaction (Fig. 5A; 
Table S3; P < 0.05). The stability index of bacterial communi-
ties was highest at pre-planting and lowest at maturity under 
SBR, but there was no significant difference through time in 
CR (Fig. 5A). In addition, SBR had a significantly greater sta-
bility index of bacterial communities than CR, but only at pre-
planting. In contrast, the stability index of fungal communities 
was significantly affected by rotation, with a greater stability 
index in SBR relative to CR (Fig. 5B; Table S3; P < 0.05). 
Subsequent Random Forest models identified bacterial and 
fungal alpha diversity as the most important predictors for their 
respective community stability (Figs. 5C and D), with a posi-
tive linear relationship between community stability and alpha 
diversity (Figs. 5E and F). Bacterial community composition, 
TN, M3 Zn, and PNM were also significantly associated with 
bacterial community stability (Fig. 5C), whereas resin P was 
significantly linked to fungal community stability (Fig. 5D).

Linking environment, soil chemical properties, 
and microbial communities to peanut yield

Using PLS-PM, we examined the linkages among changes 
in weather, irrigation, microbial communities (abundance, 
diversity, composition, and community stability), micro-
bial networks (keystone taxa and complexity), soil chemi-
cal properties (important predictors for yield determined 
by Random Forest modeling; Fig. S4), and peanut yield. 
Differences in peanut yield between irrigated and rainfed 

conditions under different rotation systems are shown in Fig. 
S5.

Under CR (Fig. 6A), the increase in temperature, precipi-
tation, and radiation showed negative impacts on bacterial 
communities (path coefficient =  − 0.67, P < 0.01), but posi-
tive effects on fungal communities (path coefficient = 0.43, 
P < 0.05) and the microbial network (path coefficient = 0.71, 
P < 0.001). Bacterial communities (path coefficient =  − 0.38, 
P < 0.05) were negatively linked to the microbial network, 
and these two microbial attributes (path coefficient =  − 0.57, 
P < 0.05; path coefficient =  − 0.91, P < 0.001) significantly 
and negatively impacted soil chemical properties  (NH4

+-N, 
POXC, C:N, TN, pH, BS, and M3 P, S and B; Fig. S4A). 
Irrigation (path coefficient = 0.50, P < 0.05) and bacterial 
communities (path coefficient =  − 0.44, P < 0.05) had con-
trasting effects on peanut yield.

Under SBR (Fig. 6B), increasing temperature, precipita-
tion, and radiation negatively affected bacterial communi-
ties (path coefficient =  − 0.53, P < 0.05) and the latter were 
negatively linked to the microbial network (path coeffi-
cient =  − 0.99, P < 0.001). However, the microbial network 
(path coefficient = 0.54, P < 0.05) made a positive contribu-
tion to soil chemical properties (BS, CEC, TN, pH, PNM, 
TC, POXC, resin P, and M3 Ca, S, Fe and Mg; Fig. S4B). 
The microbial network (path coefficient = 0.49, P < 0.05), 
soil chemical properties (path coefficient = 0.77, P < 0.001), 
and bacterial communities (path coefficient = 0.76, 
P < 0.001) were significantly and positively related to pea-
nut yield.

Discussion

Soil microbiomes play a critical role in the biogeochemical 
cycling of micro- and macro-nutrients that are vital for plant 
growth and serve as a key driver of agroecosystem func-
tioning (Bardgett and van der Putten 2014; Crowther et al. 
2019). By tracking variations in soil AMP and soil chemi-
cal properties across plant developmental stages, this study 
advances our fundamental understanding of the impact of 
long-term agricultural practices on the linkages among soil 
microbiomes, soil health, and crop productivity.

Sod‑based rotation affected soil microbiomes 
and improved soil health

Crop rotation and sampling time strongly affected multiple 
soil microbial attributes, including diversity, community 
composition, and bacterial-fungal networks. The abundance 
of microbial communities was more sensitive to sampling 
time than crop rotation, implying that season-dependent 
effects (e.g., soil temperature, precipitation, and radiation) 
were a key factor shaping soil microbiomes (Lauber et al. 

Fig. 1  Abundance, diversity, and composition of microbial com-
munities: estimated absolute abundance of the top 15 bacterial (A) 
and fungal (B) microbial classes; bacterial (C) and fungal (D) alpha 
diversity measured by the Shannon index; bacterial (E) and fungal 
(F) beta diversity calculated with a PCoA of Bray–Curtis distance 
among treatments (CR, conventional rotation; SBR, sod-based rota-
tion; I, irrigated; R, rainfed). In C, D, lowercase letters above boxes 
indicate significant differences among sampling times using a one-
way ANOVA followed by a Tukey’s HSD test for post hoc com-
parisons (P < 0.05), irrespective of irrigation and rotation. Statistical 
analysis for microbial alpha diversity is shown in Table S3. In E, F, 
ellipses include 95% confidence intervals for each rotation system 
(blue for CR, red for SBR). *, **, and *** indicate significance at 
P < 0.05, 0.01, and 0.001, respectively

◂
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2013; Mediavilla et al. 2020). Interestingly, bacterial diver-
sity and microbial community dissimilarity were signifi-
cantly lower at maturity, although microbial abundance was 
greater at maturity, irrespective of crop rotation and irriga-
tion. This was likely due to the tight link between plants 
and microorganisms during plant growth, when plants trig-
ger the rhizosphere effect (Geisen et al. 2021; Zhao et al. 
2021). Specifically, plants modulate exudation patterns, 

metabolism, and immune-associated traits at different 
developmental stages based on nutrient demand and toler-
ance to biotic and abiotic stress (Sasse et al. 2018; Trivedi 
et al. 2020; Zhao et al. 2021). This ultimately tailors the 
assembly and turnover of microbiomes, especially bacterial 
communities, given that rhizodeposition is considered to be 
dominated by labile C inputs (Kuzyakov 2010; Mendes et al. 
2014; Pausch and Kuzyakov 2018). This effect was evident 

Table 2  Effects of irrigation, sampling time, and rotation on bacterial and fungal communities based on PERMANOVA

***, **, *, and † indicate significance (marked in bold) at P < 0.001, 0.01, 0.05, and 0.1, respectively

Irrigation time Rotation Irrigation × time Irrigation × 
rotation

Time × rotation Irrigation × 
time × rotation

Bacterial communities R2 0.04 0.10 0.09 0.05 0.02 0.05 0.04
P 0.02*  < 0.001***  < 0.001*** 0.39 0.49 0.26 0.96

Fungal communities R2 0.03 0.15 0.16 0.04 0.02 0.05 0.04
P 0.28  < 0.001***  < 0.001*** 0.70 0.60 0.09† 0.35

Fig. 2  Correlations between 
environmental factors and 
microbial communities under 
CR (A) and SBR (B). Only vari-
ables with at least one signifi-
cant correlation (P < 0.05) under 
CR and/or SBR are shown. Line 
width is proportional to the par-
tial Mantel’s r statistic, and line 
color denotes the statistical sig-
nificance based on 999 permuta-
tions (orange, 0.01 < P < 0.05; 
green, P < 0.01). Pairwise 
comparisons of environmental 
factors are also shown, with 
a gradient of color and size 
of circles denoting Pearson’s 
correlation coefficient. P values 
were adjusted for multiple test-
ing with the Bonferroni-Holm 
method. POXC, permanganate-
oxidizable C; TC, total C; TN, 
total N; Tsoil, average soil 
temperature; Precipitation, total 
precipitation; Radiation, average 
solar radiation; M3, extracted 
with Mehlich III
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in the SBR system, where the concentration of POXC (an 
indicator of “active” C) was greater at maturity compared 
to the other stages. Greater POXC concentrations during the 
peanut growing season were associated with higher bacte-
rial abundance (Alphaproteobacteria, Bacilli, Actinobacte-
ria, Acidobacteria-6, Thermoleophilia, Chloracidobacteria, 

Planctomycetia, Chloroflexi, Acidobacteriia, and Nitrospira) 
but lower bacterial diversity and bacterial community dis-
similarity (Figs. 2B, S6A, S6C, and S6E), suggesting that 
this increase in a more biologically available C pool was 
concomitant with a homogenizing effect on the bacterial 
community, at least in the SBR system. Compared to fungal 

Fig. 3  A  Bacterial-fungal co-occurrence patterns at different sam-
pling times under CR and SBR. Each node represents an OTU, and 
node size is proportional to its estimated absolute abundance. The 
thickness of edges is proportional to their correlation coefficient, and 
pink and green edges represent positive and negative correlations, 
respectively. (B–E): Comparison of key topological properties of 

bacterial-fungal co-occurrence patterns (degree, clustering, closeness 
centrality, and betweenness centrality) that potentially determined the 
complexity of microbial networks across different sampling times. 
Specific topological properties of bacterial-fungal co-occurrence pat-
terns at different sampling times under CR and SBR are shown in 
Table 3

Table 3  Topological properties of the bacterial-fungal co-occurrence networks at different developmental stages under peanut systems

CR SBR

Pre-planting Flowering Maturity Pre-planting Flowering Maturity

Number of nodes 452 395 706 404 635 737
Bacterial nodes 310 (68.6%) 287 (72.7%) 578 (81.7%) 203 (50.2%) 467 (73.5%) 631 (85.6%)
Fungal nodes 142 (31.4%) 108 (27.3%) 128 (18.1%) 101 (49.8%) 168 (26.5%) 106 (14.4%)
Number of edges 1,043 846 1,651 1,000 1,617 1,924
Edges within bacteria 360 404 1262 205 892 1497
Edges within fungi 184 116 45 383 153 67
Edges between bacteria and fungi 399 326 344 412 572 360
Average degree 4.62 4.28 4.68 4.95 5.09 5.22
Clustering coefficient 0.86 0.71 0.67 0.90 0.67 0.89
Eigencentrality 0.07 0.06 0.05 0.07 0.06 0.05
Closeness centrality 0.74 0.62 0.64 0.75 0.72 0.75
Betweenness centrality 3.68 12.83 9.92 2.65 6.64 5.83
Average path length 1.74 2.32 2.1 1.60 2.03 1.70
Modularity 0.916 0.926 0.954 0.913 0.940 0.955
Percentage of positive correlations 89.4% 87.8% 97.4% 88.2% 79.2% 67.8%
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diversity, bacterial diversity was more sensitive to sampling 
time, irrespective of rotation, consistent with previous stud-
ies in which seasonal changes had a stronger influence on 
bacterial relative to fungal alpha diversity (Zhang et al. 
2020b). Overall, as different sampling times coincided with 
both season-dependent environmental changes and plant 
developmental stages, we cannot precisely determine the 
extent to which each factor made a greater contribution to 
structuring soil microbiomes in this study.

SBR led to higher microbial alpha diversity and distinct 
microbial community composition as compared to CR, 

consistent with our previous study based on a three-year 
sampling event (2017–2019) at the flowering stage under the 
cotton phase that found greater microbial diversity and dif-
ferent microbial communities in cotton roots when increas-
ing rotational diversity by integrating bahiagrass in the SBR 
system (Zhang et al. 2022a). Greater temporal crop diversity 
may generate a legacy effect that maintains nutrient avail-
ability by retaining plant residues after harvest and releasing 
limiting soil nutrients, which is a key factor in structuring 
soil microbial communities (Tiemann et al. 2015; Furey and 
Tilman 2021). The significant increase in soil C measured in 

Fig. 4  The abundance of keystone taxa at different developmen-
tal stages under CR (A) and SBR (B), and associations between the 
abundance of keystone taxa and soil chemical properties (C-J); only 
properties with a significant association with either CR or SBR are 

presented. P values were adjusted by the Bonferroni-Holm method. 
The associations between keystone taxa and all soil chemical proper-
ties are shown in Fig. S3D. “*”, “**”, “***” indicate significance at 
P < 0.05, 0.01, and 0.001, respectively
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SBR relative to CR is consistent with the greater crop growth 
and productivity observed in SBR (Zhao et al. 2009; Zhang 
et al. 2022a), which should increase the quantity and quality 
of aboveground biomass inputs due to the rotational effect 
(Zhang et al. 2021). More plant litter inputs can increase the 
activity of free-living microbes and subsequently enhance 
soil functioning, e.g., organic matter mineralization, C 
sequestration, nitrification, and P solubilization. This can 
facilitate nutrient availability, especially limiting elements 

for plant growth (e.g., N, P, Zn, and Fe), and subsequently 
stimulate above-belowground interactions (Steinauer et al. 
2016). Furthermore, stronger above-belowground interac-
tions should affect C allocation and rhizodeposition in SBR 
(Steinauer et al. 2016; Zhang et al. 2021) and intensify eco-
logical connections between soil microbial communities and 
microbially-derived nutrient dynamics (Zhang et al. 2021, 
2022b). This is consistent with the greater number of sig-
nificant links between soil chemical properties and microbial 

Fig. 5  Stability index of 
microbial communities. (A, 
B) stability index of bacterial 
(A) and fungal (B) commu-
nities at different sampling 
times under CR and SBR. (A) 
Lowercase letters above boxes 
indicate significant differences 
among sampling times under 
SBR using a one-way ANOVA 
followed by a Tukey’s HSD 
test for post hoc comparisons 
(P < 0.05). Asterisks indicate 
significant differences between 
CR and SBR at pre-planting. 
(B) Uppercase letters next to 
rotation indicate significant dif-
ferences between SBR and CR. 
Statistical analysis for the stabil-
ity index of microbial commu-
nities is shown in Table S3. (C, 
D) Random Forest mean predic-
tor importance of soil chemical 
and weather properties for the 
stability of bacterial (C) and 
fungal (D) community. Shan-
non, Shannon index; Composi-
tion, community composition 
as computed by first principal 
coordinate analysis score; 
Ktaxa, keystone taxa; POXC, 
permanganate-oxidizable C; 
TC, total C; TN, total nitro-
gen; PNM, potential nitrogen 
mineralization rate; CEC, cation 
exchange capacity; BS, base 
saturation; Tsoil, average soil 
temperature; Radiation, average 
solar radiation; M3, extracted 
with Mehlich III. (E and F) 
Linear relationship between 
alpha diversity of bacterial (E) 
and fungal (F) communities and 
their corresponding commu-
nity stability index. Statistical 
analysis was performed using 
ordinary least squares linear 
regressions. P values were 
adjusted by the Bonferroni-
Holm method. “*”, “**”, “***” 
indicate significance at P < 0.05, 
0.01, and 0.001, respectively



 Biology and Fertility of Soils

1 3

community composition we observed in SBR, especially for 
bacterial communities, as well as higher concentrations or 
rates of TC, TN,  NO3

−-N, PNM, resin P, and M3 Mg, Zn, 
Fe, and Cu. Overall, these results indicate that higher rota-
tional diversity can stimulate C storage and improve nutrient 

availability and soil health through positive feedback loops 
between nutrient cycling and microbial attributes.

SBR had a significantly larger stability index of microbial 
communities than CR, implying that microbial communities 
in SBR were more stable. As expected, microbial diversity 

Fig. 6  Partial least squares path 
modeling showing cascading 
relationships of irrigation and 
weather on microbial commu-
nities, microbial network, soil 
chemical properties, and peanut 
yield under CR (A) and SBR 
(B). Path coefficients indicate 
the direction and strength of the 
relationships between variables 
while coefficients of determina-
tion  (R2) indicate the amount 
of variance in latent variables 
that is explained by the manifest 
variables included in their com-
putation; both were calculated 
with 1000 bootstraps. Latent 
variables are bolded in each box 
and inferred from manifest vari-
ables, where values following 
each manifest variable indicate 
the strength of the relationship 
between this manifest variable 
and the latent variable. The 
manifest variables contribut-
ing to the latent variable soil 
chemical properties under CR 
and SBR are shown in Fig. S4. 
Blue and red arrows indicate 
positive and negative relation-
ships, respectively. Values 
adjacent to arrows indicate path 
coefficients, and the width of 
arrows shows the strength of 
path coefficients. *, **, and *** 
indicate significance at P < 0.05, 
0.01, and 0.001, respectively
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made the largest contribution to microbial community stabil-
ity and these strong positive relationships between diversity 
and community stability of soil microbiomes further support 
the diversity-stability hypothesis underlying plant-microbi-
ome interactions (Wagg et al. 2018; Ratzke et al. 2020). 
Besides biotic factors, a subset of soil chemical properties 
mostly related to N was a significant contributor to bacte-
rial community stability (Fig. 5C). Peanut can release high-
quality litter and organic sources (e.g., high N concentra-
tion, low C:N and concentration of phenol and lignin) to the 
soil (Pan et al. 2019), profoundly affecting the activity and 
turnover of fast-growing microbes, such as bacterial com-
munities (Ho et al. 2017). In turn, microbial communities 
can enhance N cycling processes and N transformations. We 
found a greater PNM rate,  NO3

−-N concentration, and esti-
mated absolute abundance of Nitrospira (a dominant nitrite 
oxidizer or comammox) and lower concentration of soil pro-
tein throughout the growing season under SBR, although 
soil protein was greater at pre-planting in SBR relative to 
CR (Figs. 1A and B; Table 1). This implies that soil micro-
bial communities associated with higher rotational diver-
sity had a greater ability to promote microbially-mediated N 
cycling. Besides, SBR had greater concentrations of TN and 
 NO3

−-N at each sampling time than CR, implying that SBR 
with high microbially mediated N processes can ultimately 
increase N retention and availability. This is consistent with 
our previous study in the cotton crop grown after peanut 
in these plots, where SBR induced a significantly higher 
relative abundance of Nitrospira and greater concentrations 
of TN and  NO3

−–N relative to CR (Zhang et al. 2022b). 
Collectively, these results demonstrate that peanut litter or 
residues have greater direct and indirect effects on structur-
ing microbial communities under SBR, where they promote 
microbially-mediated N dynamics and N retention.

Sod‑based rotation promoted network complexity 
and ecological functions of keystone taxa 
while increasing crop productivity

SBR significantly increased the network complexity of soil 
microbiomes, most likely as a result of higher C and nutri-
ent availability in SBR compared to CR. Soil microbial 
complexity is highly associated with resource availability 
(Guo et al. 2020a; Qiu et al. 2021), where resource limita-
tion may impair microbial diversity and network complexity 
(Barberán et al. 2012; Banerjee et al. 2016, 2019). Notably, 
we found that SBR had a larger percentage of negative cor-
relations than CR (Fig. 3A and Table 3), where negative cor-
relations in the microbial network can be a proxy for network 
stability and fewer negative correlations in microbiomes may 
cause destabilization of microbial communities (Coyte et al. 
2015; Yuan et al. 2021; Hernandez et al. 2021). This sug-
gests that microbial communities associated with the higher 

rotational diversity in SBR were more stable (Yuan et al. 
2021; Hernandez et al. 2021), consistent with a greater sta-
bility index of microbial communities in SBR relative to 
CR. It is likely that taxa involved in antagonistic interspe-
cific interactions in CR may be replaced by slow-growing 
oligotrophic microbes when resources are limited (Männistö 
et al. 2016; Hernandez et al. 2021), as evidenced by the 
higher estimated absolute abundance of oligotrophic taxa 
(e.g., bacterial class Acidobacteriia, Alphaproteobacteria, 
and Deltaproteobacteria, bacterial phylum Gemmatimona-
detes, and fungal phylum Basidiomycota) (Ho et al. 2017) 
in CR than SBR. This is consistent with our prior study in 
cotton plots where CR had a higher relative abundance of 
Alphaproteobacteria, Deltaproteobacteria, and Gemmati-
monadetes compared to SBR (Zhang et al. 2022b).

We also observed a larger abundance of keystone taxa and 
a greater diversity of microbial phyla and genera to which 
they were assigned under SBR relative to CR. This suggests 
that SBR promoted the richness of keystone taxa that com-
plexify the network community (Yuan et al. 2021) as key-
stone taxa can also act as an indicator of community shifts 
and compositional turnover (Herren and McMahon 2018; 
Banerjee et al. 2018). Keystone taxa (mainly bacterial taxa) 
with higher abundance and richness in SBR were associ-
ated with higher functional potential, e.g., photoautotrophy, 
litter decomposition, nitrification, N fixation, and S respira-
tion and oxidation (Fig. S3C). The abundance of keystone 
taxa was significantly related to the concentration or rate of 
POXC, C:N,  NO3

−-N, PNM, resin P, M3 S, B, and Zn under 
SBR (Figs. 4C to J), whereas there was only a single signifi-
cant positive correlation between keystone taxa and PNM 
under CR (Fig. 4F). This demonstrates how higher richness 
and abundance of keystone taxa may create an environment 
more favorable to soil microbial composition and function 
and potentially promote above-belowground nutrient flows 
that are conducive to crop performance and productivity 
(Fig. 6; Zhang et al. 2021; Wang et al. 2022).

Among the keystone taxa present in both systems, Actino-
bacteria, an antagonistic bacteria that can release antibiotic 
compounds against plant pathogens (Álvarez-Pérez et al. 
2017; Lee et al. 2021), were more abundant at flowering 
and maturity under SBR relative to CR, where Actinobac-
teria were only found at pre-planting (Table S4). Interest-
ingly, some fungal keystone taxa (Bipolaris sp. at flowering 
and Fusarium sp. at maturity) found in CR might act as 
pathogens (Fig. S3), which could significantly reduce crop 
quality and productivity (Manamgoda et al. 2005; Li et al. 
2018). For example, F. oxysporum and F. solani are pri-
mary pathogens that cause peanut root rot (Villarino et al. 
2019). Thus, higher rotational diversity in SBR may control 
the assembly of pathogenic communities while supporting 
more beneficial microbes, consistent with our previous study 
reporting that SBR restricted the density of pathogens and 
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promoted beneficial microbes residing in cotton roots, e.g., 
Opitutaceae, Pseudonocardiaceae, Rhizobiaceae, Bacil-
laceae, Comamonadaceae, Serendipitaceae, and Glomer-
aceae (Zhang et al. 2022a). Compared to only eight fungal 
keystone OTUs that primarily functioned as saprotrophs 
across all sampling times in SBR, there were far more bac-
terial keystone OTUs (35 nodes) that played ecologically 
important roles in driving nutrient cycling (including C, N, 
S, Mn, and Fe) and improving plant health and fitness (Fig. 
S3 and Table S4). This is likely the main reason why bacte-
rial rather than fungal communities largely contributed to 
peanut productivity (Fig. 6). Ultimately, more soil chemical 
properties predicted by the Random Forest analysis (Fig. 
S4) and a more complex and stable microbial network with 
higher abundance and richness of keystone taxa were posi-
tively associated with peanut productivity in SBR (Fig. 6). 
These results suggest that microbiomes found in a system 
with higher rotational diversity contributed to significant 
plant-growth promotion by maintaining multiple agroeco-
system functions, including element cycling, nutrient provi-
sioning, and pathogen control (Durán et al. 2018; Fan et al. 
2021).

Irrespective of rotation, there were differences in the 
number and abundance of keystone OTUs among sampling 
times, suggesting that keystone taxa were affected by envi-
ronmental changes (Qiu et al. 2021). However, changes in 
weather conditions driven by sampling time had a smaller 
impact on microbial network structure (complexity and 
keystone taxa) under SBR compared to CR (Fig. 6). This 
implies that more stable and complex microbial commu-
nities with a greater abundance of keystone taxa in SBR 
might be more resistant and adaptive to variations in weather 
changes, similar to the weaker effects of weather changes 
observed on soil microbial community composition in SBR 
relative to CR, especially in fungal communities (Fig. 2).

Conclusions

By quantifying and characterizing the temporal dynamics 
of soil AMP under long-term agricultural practices, this 
study improved our understanding of the linkages among 
soil microbiomes, soil health, and crop productivity. How-
ever, given that extracellular DNA from dead microbes 
can persist in soil for weeks to years, and that up to 40% 
of prokaryotic and fungal DNA remaining in the soil can 
be relic DNA from dead cells (Pietramellara et al. 2009; 
Carini et al. 2016), relic DNA extraction and amplification 
in PCR or qPCR could inflate soil microbial diversity and 
lead to wrongful estimates of relative/absolute abundances 
of microbial communities (Carini et al. 2016). Besides, as 
many microorganisms (e.g., bacteria) have multiple cop-
ies of the 16S rRNA gene in their genome, estimating 16S 

rRNA read counts via amplicon sequencing would cause 
biased cell count estimates. However, it is still difficult to 
correct 16S rRNA gene copy numbers in 16S rRNA gene 
amplicon sequencing (Louca et al. 2018; Starke et al. 2021). 
Therefore, to accurately track the roles of soil microbiomes 
in agroecosystem functions, future studies will need to deter-
mine changes in microbial gene expression temporally and/
or spatially to confirm our study’s main conclusions.

Overall, we found that rotation had a strong influence on 
multiple facets of soil microbial communities in this study, 
with greater diversity and community stability of soil micro-
biomes, complexity and stability of bacterial-fungal net-
works, and abundance and richness of keystone taxa in SBR 
relative to CR. This may make soil microbiomes more adap-
tive and resilient to weather variability. Compared to CR, 
SBR exhibited greater concentrations of TC, TN,  NO3

−-N, 
resin P, M3 Mg, Zn, Fe, and Cu, along with greater PNM 
rates and C:N ratio. Also, there were more significant links 
between soil chemical properties and microbial community 
composition and the abundance of keystone taxa under SBR. 
These suggest that higher rotational diversity can intensify 
ecological connections among soil, microbes, and plants and 
further enhance agroecosystem functions, including increas-
ing soil C storage and improving nutrient availability and 
soil health. Finally, a greater number of bacterial keystone 
OTUs were linked to nutrient cycling and improvements in 
plant health and fitness compared to fungal keystone OTUs 
under SBR. Overall, this study provided new insights on 
soil-microbes-plant interactions underlying high rotational 
diversity and shed light on the importance of diversifying 
rotational diversity to enhance soil health, soil microbial 
attributes, and crop productivity.
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