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A B S T R A C T   

Integrating two years of bahiagrass (Paspalum notatum Flugge) into the peanut (Arachis hypogea L.) and cotton 
(Gossypium hirsutum L.) cropping system improves soil quality and crop production as compared to a conven-
tional peanut-cotton-cotton rotation (CR). However, it is unclear if this system, known as a sod-based rotation 
(SBR), affects soil biological communities (e.g., soil microorganisms and nematodes) and their trophic in-
teractions. Furthermore, how soil trophic groups respond to agricultural management (e.g., irrigation) is 
understudied. In April 2017, we collected pre-planting soil samples (0–30 cm) from cotton plots located in 
Quincy (Florida, United States) that had been under CR (cotton grown in two consecutive years) and SBR (cotton 
grown only once) for 17 years. We used amplicon sequencing to investigate soil microbial communities and an 
inverted microscope technique to quantify nematodes. Compared to CR, SBR significantly increased nematode 
alpha diversity (one-way ANOVA; P < 0.05) and induced different nematode communities. In contrast, there 
were no significant differences in the diversity and structure of bacterial communities between SBR and CR. SBR 
plots were significantly enriched in Nitrospira, while the second of two consecutive years of cotton growth in CR 
had a higher relative abundance of Alphaproteobacteria (one-way ANOVA; P < 0.05). Plant-parasitic (848 counts 
per 100 g dry soil) and bacterial-feeding nematodes (798 counts per 100 g dry soil) had a similar abundance in 
SBR, while plant-parasitic nematodes (7772 counts per 100 g dry soil) were predominant in CR (<1000 counts 
per 100 g dry soil for all other taxa). SBR exhibited a greater number of significant paired Pearson correlations (P 
< 0.05) among functional groups of bacteria and nematodes compared to CR systems. Irrigation had no effect on 
the diversity and structure of bacterial and nematode communities in SBR, although some soil bacterial and 
nematode groups responded to irrigation. Overall, these results suggest that integrating bahiagrass to diversify 
the conventional peanut-cotton rotation is a sustainable approach to enhance soil biodiversity, with more diverse 
nematode communities and complex soil trophic interactions that will affect the response to crops and irrigation. 
Thus, future crop rotations should increase plant functional trait diversity (e.g., by adding perennial grasses) to 
maximize benefits to soil communities.   

1. Introduction 

Peanut (Arachis hypogea L.) and cotton (Gossypium hirsutum L.) are 
important crops worldwide, providing food, industrialized products, 
fiber, seed, and/or oil (Ahmad and Hasanuzzaman, 2020; Ganguly et al., 
2020). The US is a major producer of peanut and cotton (Perea-Moreno 

et al., 2018; Himanshu et al., 2019), and they are major summer agro-
nomic crops in the Southeast US, accounting for approximately 75% (1.3 
million hectares) and 35% (2.5 million hectares) of the total US peanut 
and cotton production (2005–2018), respectively (Carlisle et al., 2019). 
However, farmers in this area face major challenges to maintain yield 
and profitability in the traditional crop rotation system of cotton-cotton- 
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peanut (CR). A major issue is that soils are coarse-textured, low in soil 
organic matter (SOM) and water holding capacity (WHC), and prone to 
compaction and soil erosion, resulting in fertility and moisture deficits 
(Katsvairo et al., 2007a, 2007b, 2009). 

Perennial grasses are beneficial to many soil functions in agro-
ecosystems (Lodge, 1994; Abraham et al., 2009), which is partly due to 
their ability to develop deep root systems. These strong and vigorous 
root systems can penetrate through compacted soil layers, increasing 
soil aeration, water infiltration, and structure (Reeves, 1997; Katsvairo 
et al., 2006). Simultaneously, perennial grasses translocate 33% of the 
carbon (C) they fix to belowground structures and exudates on average, 
improving soil organic C and nitrogen (N) status relative to annual crops 
(Reeves, 1997; Katsvairo et al., 2006; Pausch and Kuzyakov, 2018). 
Because of these traits, integrating two years of perennial bahiagrass 
(Paspalum notatum) in the CR system, referred to as a sod-based rotation 
(SBR), has been proposed in the Southeast US since the early 2000s 
(Katsvairo et al., 2007a, 2007b, 2009; Zhao et al., 2009; Dourte et al., 
2016). Previous studies have demonstrated that SBR provides many 
benefits relative to CR (Katsvairo et al., 2007a, 2007b, 2009; Zhao et al., 
2009). For example, SBR can substantially increase crop yields while 
reducing the use of fertilizers, pesticides, and irrigation, due to greater 
SOM and N use efficiency, lower pressure of pests and disease, higher 
activity of nutrient cycling enzymes (e.g., β-glucosidase, β-glucosami-
nidase, acid and alkaline phosphatases, and arylsulfatase), and 
enhanced soil physical properties relative to the CR system (Katsvairo 
et al., 2006, 2007a, 2007c; Zhao et al., 2009; Dourte et al., 2016; 
Schumacher et al., 2020). However, the long-term effects of SBR on the 
diversity and structure of soil belowground communities remain 
understudied, despite the critical role of microbial communities in 
biogeochemical cycles and plant productivity (Fierer, 2017; Crowther 
et al., 2019). 

Including bahiagrass in crop rotations may also suppress the growth 
of plant-parasitic nematodes (PPN), especially reniform nematodes 
(Rotylenchulus reniformis). Reniform nematodes are significant patho-
gens of cotton and are estimated to cause a 60% yield loss worldwide 
(Tsigbey et al., 2009; Doshi et al., 2010; Schumacher et al., 2020). 
However, little is known about how the conversion to SBR affects free- 
living nematode communities in the long term. Free-living nematodes 
are the most diverse group of soil mesofauna and they occupy key tro-
phic positions in soil food webs, leading to pronounced effects on soil 
ecological processes through their interactions with other soil microor-
ganisms (Osler and Sommerkorn, 2007; Neher, 2010). For example, 
bacterial-feeding nematodes (BFN) may enhance nitrification by 
altering ammonia-oxidizing bacteria community composition (i.e., 
Nitrosomonas sp. and Nitrosospira sp. (Xiao et al., 2010). Fungal-feeding 
nematodes and BFN release N compounds when grazing on decomposed 
microbes, directly affecting C and N mineralization (Anderson et al., 
1983). Free-living nematodes also disseminate microbial propagules in 
the soil, accelerating the colonization of substrates and their minerali-
zation, which releases nutrients (Bouwman et al., 1994; Jiang et al., 
2018). Although overgrazing of bacteria and fungi may decrease the 
overall activity of microorganisms, trophic interactions among preda-
tors, omnivores, BFN, and fungal-feeding nematodes typically stimulate 
nutrient cycling (Bouwman et al., 1994; Jiang et al., 2017). 

Nematode metabolic footprints (NMFs) are used to estimate the 
contribution of different nematode groups to ecosystem services and 
functions. In particular, these indices can provide information in terms 
of the biomass, metabolic activity, and magnitude of C and energy flow 
driven by different nematode groups in soil food webs (Ferris et al., 
2012; da Silva et al., 2021; Karuri, 2021). Despite these findings, the 
long-term effects of different crop rotations on biotic interactions be-
tween microorganisms and nematodes remain poorly known, including 
how these interactions affect nutrient cycling and soil fertility. This is 
because most previous research focusing on the effects of cropping 
systems and management on soil belowground communities mostly 
studied a single trophic-level community (e.g., microorganisms or 

nematodes; Chen et al., 2020a, 2020b; Guo et al., 2020; Schumacher 
et al., 2020; Van Nguyen et al., 2020). 

Agricultural water management, including irrigation, is an impor-
tant determinant of soil belowground communities as it alters soil 
moisture and water availability (Prado and Airoldi, 1999; Drenovsky 
et al., 2004; Falkowski et al., 2008; Franco and Gherardi, 2019). For 
example, soil moisture can directly affect bacterial physiological status 
(Harris, 1981), and microbial community composition, structure, and 
biomass are primarily controlled by soil moisture (Brockett et al., 2012; 
Shen et al., 2018; Frindte et al., 2019). Nematode communities are also 
affected by soil moisture given the high impact of soil water on move-
ment and activity (Franco and Gherardi, 2019) and on the regulation of 
substrate availability, which modulates soil communities and their ac-
tivity (Prado and Airoldi, 1999). As integrating bahiagrass in SBR in-
creases SOM and WHC and decreases irrigation requirements compared 
to CR (Dourte et al., 2016), this could affect soil microbial and nematode 
communities. Integrating perennial grasses into crop rotations also in-
creases plant functional trait diversity and soil biodiversity (Lange et al., 
2015; Faucon et al., 2017), and this higher biodiversity could increase 
resistance to environmental stress and anthropogenic disturbances, as 
seen in other ecosystems (Isbell et al., 2015; Beaury et al., 2020; Phil-
ippot et al., 2021). Therefore, SBR can be posited to have a greater 
tolerance to fluctuations in water content. 

This study focuses on the long-term effects (17 years) of CR and SBR 
systems on soil microbial and nematode communities during the cotton 
phases of these systems. Our objectives were to 1) identify the dominant 
microbial and nematode communities in SBR and CR systems; 2) char-
acterize differences in soil biological communities and trophic in-
teractions in soil food webs between SBR and CR; and 3) determine the 
responses of bacterial and nematode communities to irrigation under 
different crop rotation systems. We hypothesized that 1) SBR would 
increase the diversity of microbial and nematode communities and 
enhance trophic interactions between microbial and nematode com-
munities as increasing plant functional traits should increase soil 
biodiversity; 2) SBR would decrease PPN population and increase the 
abundance of free-living nematodes due to an increase in predatory 
nematodes that can control PPN abundance; and 3) soil biological 
communities would be more sensitive to irrigation in CR relative to SBR 
because the greater soil biodiversity found with a more diverse rotation 
should reduce the vulnerability of soil organisms to water scarcity. 

2. Materials and methods 

2.1. Experimental site and design 

The experimental site was established in 2000 at the North Florida 
Research and Education Center, Quincy, Florida (30◦32.79′N, 
84◦35.50′W), on a soil mapped as a Dothan sandy loam soil (fine-loamy, 
kaolinitic, thermic Plinthic Kandiudult) (Dourte et al., 2016). The 
experiment used a strip-plot experimental arrangement with a ran-
domized complete block design. There were two main crop rotation 
systems, bahiagrass-bahiagrass-peanut-cotton (SBR) and peanut-cotton- 
cotton (CR), arranged in seven main plots (i.e., each rotation phase of 
the two systems) in each of three blocks, with 45.7 × 18.3 m2 plots. 
Every rotation phase was represented every year, with three replicated 
plots for each rotation phase of the two systems. Each of the three 
experimental blocks combined two contiguous sections of 128 × 45.7 
m2, where one section was irrigated and the other was rainfed only. 
Thus, each main plot was divided into an irrigated and a rainfed subplot. 
Irrigated subplots received 3 cm of water every week (the dates for 
irrigation can be found in Schumacher et al., 2020) via a lateral line 
overhead irrigation system, following the recommendations from the 
Georgia Crop Production Guide, unless there was substantial rainfall 
(Dourte et al., 2016). 

Cotton and peanut have been planted between early April and mid- 
May every year since 2000. A 5-10-15 (N-P2O5-K2O) fertilizer was 
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applied in the bahiagrass plots at a rate of 28 kg ha− 1 N, 24 kg ha− 1 P, 
and 84 kg ha− 1 K, broadcast immediately before seeding bahiagrass. The 
first-year bahiagrass was mowed twice for hay in early July and late 
August, and the second-year bahiagrass was cut three times for hay in 
early July, late August, and mid-October. A 5-10-15 fertilizer was also 
applied in all cotton plots at seeding at the same rate as the bahiagrass 
plots, and an additional 67 kg N ha-1 was side-dressed at the first square 
stage each year. Peanut received no fertilizers based on the Florida 
peanut production recommendations and soil tests that did not indicate 
deficiencies (Zhao et al., 2010). 

After harvesting cotton and peanut or killing bahiagrass with 
glyphosate [N-(phosphonomethyl) glycine; 1.1 kg active ingredient 
ha− 1] in late September to October, oat (Avena sativa L.) was planted as a 
winter cover crop in all plots, except bahiagrass completing its first year 
of growth, using a Great Plains no-till drill at a seeding rate of 67 kg ha− 1 

(Great Plains Mfg., Assaria, Kansas) and fertilized with ammonium ni-
trate at a rate of 45 kg N ha− 1. Cover crops were killed in early spring 
with glyphosate (1.1 kg active ingredient ha− 1) each year. 

2.2. Soil sampling 

Three cotton phases were sampled for this study, one from SBR and 
two from CR (first- and second-year cotton). Supplementary Table S1 
shows the history (2012–2017) of rotation phases for all plots that were 
under cotton in 2017 for each system. Surface soil samples (0-30 cm) 
were collected using an Oakfield tube before cotton planting in April 
2017 in order to analyze soil microbial and nematode communities. Ten 
soil cores (diameter = 2 cm) were taken per subplot, and five of these 
cores were mixed to form a composite subsample while the other five 
cores were mixed to make a different composite subsample. When 
conducting statistical analyses, we integrated these two subsamples as 
an individual sample using the average for each variable. In total, there 
were 18 samples (3 cotton phases × 2 irrigation conditions × 3 repli-
cates). A subsample for each soil sample was sieved through a screen 
with 0.64 cm apertures, and each sample was transferred to 2 ml 
Eppendorf tubes and stored at − 80 ◦C prior to DNA extraction. 

2.3. Nematode identification, quantification, and determination of 
metabolic footprints 

The extraction of soil nematodes followed the sucrose-centrifugation 
method (Jenkins et al., 1964). Nematode samples were fixed in 2% 
formalin before counting with an inverted microscope (Zeiss Inc., 
Oberkochen, Germany) and identified morphologically using a key 
(Bongers and Bongers, 1998). Soil nematodes were functionally grouped 
into bacterial-feeding, fungal-feeding, plant-parasitic, omnivorous, and 
predatory nematodes based on feeding habits (Yeates et al., 1993). 
Nematode populations were expressed as individuals per 100 g of dry 
soil. 

Nematode metabolic footprints (NMFs) were used to estimate the 
amount of C and energy entering food webs through specific nematode 
groups and can be calculated using these formulas: 

W =
(
D2 ×L

)/(
1.6× 106), (1)  

NMFs = Σ
(
Nt

(
0.1 Wt

/
mt + 0.273

(
W0.75)) ), (2)  

where W is total nematode biomass (μg) per individual, and D and L are 
maximum body diameter (μm) and body length (μm), respectively, 
which were determined using an ocular micrometer. Nt represents the 
number of taxa in each trophic group, Wt is the body weight, and mt is 
the colonizer-persister (cp) value (Ferris, 2010; Ferris et al., 2012; Guan 
et al., 2018). The cp value for each genus was determined by life-history 
characteristics (Bongers and Bongers, 1998). The enrichment footprint 
is the metabolic footprint of lower trophic levels (cp of 1-2), where 
nematodes respond to enrichment in C resources (Ferris, 2010). The 

structure footprint is the metabolic footprint of higher trophic levels (cp 
of 3-5; Ferris, 2010; Ferris et al., 2012). The herbivore, bacterivore, and 
fungivore metabolic footprints are nematode indicators of C and energy 
flow entering the soil food webs through their respective channels 
(shown by a specific cp value for each functional nematode group; 
Ferris, 2010). 

2.4. Soil DNA extraction and amplicon sequencing 

Soil DNA was extracted using the DNA PowerSoil kit (MoBio, 
Carlsbad, California, USA) following the manufacturer's instructions. 
Three-step PCR was modified according to the study of Chen et al. 
(2019). Briefly, bacterial 16S rRNA gene fragments were amplified using 
primer sets to target the V4-V5 variable region. The forward primer was 
515F (5′- GTGCCAGCMGCCGCGGTAA -3′) linked with a sample-specific 
10-bp barcode sequence at the 3′end of primers, and the reverse primer 
was 806R (5′- GGACTACHVGGGTWTCTAAT -3′) (Bates et al., 2011; 
Caporaso et al., 2011). Each sample was amplified in triplicate, and the 
reaction products were pooled and purified using bead-cleanup 
(AMPure-XP, Beckman Instruments, Brea, California, USA). The quan-
tity of PCR products was assessed by spectrophotometry (NanoDrop™, 
Thermo Fisher Scientific, Thermo Scientific™). The size and quality of 
PCR products were verified by screening on 1% (w/v) agarose gels. All 
amplicons were pooled at equimolar concentrations (20 ng μl− 1), and 
the index sequencing of paired-end 250 bp was performed on an Illu-
mina Miseq (v2 250bp, 6Gb sequencing capacity) (Illumina Inc., San 
Diego, California, USA). The raw sequence data were deposited in the 
NCBI Sequence Read Archive (http://trace.ncbi. nlm.nih.gov/T 
races/sra/) under Study PRJNA600872. 

2.5. Assembly of DNA amplicon sequence data 

Data of bacterial 16 s rRNA gene sequencing were processed by 
QIIME 2 (Bolyen et al., 2019). High-quality sequences were filtered 
according to Caporaso et al. (2011) and mapped to operational taxo-
nomic units (OTUs) using the “vsearch” function. Taxonomy at the 
species level was assigned to OTUs at a 97% identity threshold using the 
RDP classifier with the Greengenes database as a reference and a con-
fidence cutoff of 0.8 for bacteria and archaea (Version 2018). All data-
sets were rarefied to 5000 sequences per sample prior to analysis to 
prevent potential bias caused by different sequencing depths. For this 
study, we divided bacterial communities into C-associated (e.g., Acid-
obacteria, Actinobacteria, Bacteroidetes, and Proteobacteria) and N- 
associated (e.g., ammonia-oxidizing bacteria and archaea, and nitrite- 
oxidizing bacteria) taxa. 

2.6. Statistical analyses 

Statistical analyses were performed in R, version 3.5 (Hector, 2015; 
Xia et al., 2018). Alpha diversity of bacterial and nematode communities 
was determined with the Shannon index (Zhang et al., 2017). For beta 
diversity, the dissimilarity of bacterial and nematode communities 
among all samples was calculated using Bray-Curtis distances at the OTU 
level (Zhang et al., 2015), and nonmetric multidimensional scaling 
(NMDS) ordination was used to visualize the differences in bacterial and 
nematode communities. Permutation multivariate analysis of variance 
(PERMANOVA) and analysis of similarity (ANOSIM) were used to assess 
the statistical significance of compositional differences of bacterial and 
nematode communities. Computations for alpha and beta diversity, 
PERMANOVA, and ANOSIM were made using the vegan package (Xia 
et al., 2018). Linear mixed models (LMM) were used to analyze the ef-
fects of crop rotation, irrigation, and their interactive effects on bacterial 
and nematode-associated variables, with field plot number used as a 
random effect (package: lmerTest; Zhao et al., 2019). Shapiro-Wilk's and 
Levene's test were used to examine the normality and homogeneity of 
variance within the treatments, respectively. When crop rotation by 
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irrigation interactions were significant in the LMM, the effect of crop 
rotation was determined for irrigated and rainfed plots separately, using 
a one-way ANOVA followed by a Tukey HSD test at P < 0.05, and the 
effects of irrigation were determined with a t-test comparing irrigated 
and rainfed conditions for each cotton phase individually. For variables 
in which only the main effect of crop rotation was significant, a Tukey 
HSD test was used among cotton phases regardless of irrigation, when 
variances within cotton phases were normally distributed and homo-
geneous. In addition, Pearson correlations were computed between 
irrigation, bacterial and nematode diversity and community composi-
tion, and dominant bacterial and nematode groups, using the “cor” 
function (package: corrplot; Wei et al., 2017); P-values were adjusted by 
the Bonferroni-Holm method for these correlations. 

Structural equation modeling (SEM) was used to quantify the 
importance of crop rotation and irrigation on microbial and nematode 
diversity and NMFs. Crop rotation variables were created by assigning 
the following values: 2 to SBR, 1 to first-year cotton phase in CR (1st- 
year CR), and 0 to second-year cotton phase in CR (2nd-year CR) based 
on the level of previous crop diversity. For irrigation variables, irrigated 
and rainfed treatments were assigned the value 1 and 0, respectively. 
Bacterial and nematode alpha diversity were represented by its corre-
sponding Shannon index. All variables were standardized by Z trans-
formation (mean = 0, standard deviation = 1) using the “scale” function. 
All NMFs were reduced in dimension using NMDS, and the variance of 
NMFs was represented by the first axis of NMDS (Zhao et al., 2019; 
Zhang et al., 2020). SEM was constructed and analyzed in AMOS 24.0 
(SPSS, Chicago, IL, USA) using the covariance matrix of these variables 
fitted by a maximum likelihood evaluation method (Zhang et al., 2020). 
A nonsignificant Chi-square test (P > 0.05), high goodness-of-fit index 
(GFI > 0.90), and low root mean square error of approximation (RMSEA 
< 0.05) were used to indicate a SEM that fitted the data well (Byrne, 
2016). 

3. Results 

3.1. Soil microbial community composition and diversity 

A total of 181,815 high-quality sequences ranging from 5626 to 
13,587 sequences per sample (10,101 sequences on average) were ob-
tained from all soil samples after quality filtering (Supplementary 
Table S3). Of these, 96.0% were classified as bacteria, 1.6% as archaea, 
and 2.4% remained unclassified. The dominant C-associated bacterial 
taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, and Pro-
teobacteria, accounted for 57.7–87.8% of the total sequences (Fig. 1A). 
Among C-associated taxa, irrigation only affected the relative abun-
dance of Actinobacteria, with a greater relative abundance in rainfed 
plots compared to irrigated plots (Table 1; t-test; P < 0.05). Only two C- 
associated bacterial taxa were impacted by crop rotation (Table 1): the 
relative abundance of Deltaproteobacteria was significantly enriched 
under SBR and 2nd-year CR relative to 1st-year CR plots, and 2nd-year CR 
exhibited a higher relative abundance of Alphaproteobacteria compared 
to SBR and 1st-year CR plots (Fig. 1A; one-way ANOVA; P < 0.05). 

All N-associated microorganisms identified in all soil samples were 
either ammonia-oxidizing archaea (Nitrosotalea and Ca. Nitrosophaera) 
or nitrite-oxidizing bacteria (Nitrospira), comprising 2.2-20.3% of the 
total sequences found across treatments (Fig. 1B). There was a signifi-
cant rotation by irrigation interaction for the relative abundance of 
Nitrospira (Table 1). Among irrigated treatments, the relative abun-
dance of Nitrospira was higher in SBR than CR systems. The effect of 
irrigation was significant only in SBR (P < 0.001), where irrigated plots 
had a higher relative abundance of Nitrospira than rainfed plots. The 
relative abundance of Ca. Nitrosophaera was significantly higher in 2nd- 
year CR as compared to SBR and 1st-year CR plots (P < 0.05). There was 
no significant difference among treatments for the relative abundance of 
Nitrosotalea (less than 0.12%), which was only present in 1st-year CR and 
irrigated treatments of 2nd-year CR. 

Bacterial alpha diversity, calculated with Shannon's index, was not 
significantly affected by either crop rotation or irrigation (Fig. 2A; 
Table 1). Similar to alpha diversity, differences in bacterial communities 
among rotation phases or between irrigated and rainfed treatments (P >
0.05) were not significant based on PERMANOVA and ANOSIM tests 
(Fig. 2B; Table 3, and Supplementary Table S4). 

3.2. Nematode community and metabolic footprints 

The total population of nematodes varied from 850 to 16,155 in-
dividuals per 100 g dry soil (mean 6240; Supplementary Table S3), 
which were classified into 45 genera. Nematode communities were 
primarily dominated by PPN and BFN in the SBR system, accounting for 
over 80% of total nematode abundance (Fig. 3). On average, PPN 
abundance in CR was ten-fold greater than in the SBR system, ac-
counting for more than 80% of total nematode abundance as opposed to 
roughly 45% for SBR. Crop rotation had a significant effect on PPN, as 
PPN population density was greatest in 2nd-year CR (9821 counts per 
100 g dry soil) and lowest in SBR (848 counts per 100 g dry soil). 
Although BFN abundance was similar between SBR (798 counts per 100 
g dry soil) and CR systems (636 counts per 100 g dry soil; one-way 
ANOVA, P > 0.05), the relative abundance of BFN (expressed as a % 
of total nematode population) was substantially lower in CR relative to 
SBR plots. The enrichment, herbivore, and bacterivore footprints were 
the main NMFs found in this study (Fig. 4; Table 2). Regardless of irri-
gation, enrichment and bacterivore footprints were significantly lower 
and HF was significantly higher under 2nd-year CR relative to SBR and 
1st-year CR (one-way ANOVA, P < 0.05). There was no significant dif-
ference between SBR and 1st-year CR for enrichment and bacterivore 

Fig. 1. Relative abundance (mean ± standard error) of dominant carbon (A) 
and nitrogen (B) associated bacterial taxa under SBR and CR. Lowercase letters 
indicate significant differences (P < 0.05) among cotton phases in crop rota-
tions where the main effect of crop rotation was significant. Uppercase letters 
indicate significant differences (P < 0.05) among cotton phases in crop rota-
tions where crop rotation by irrigation interaction was significant. Asterisks 
(***) shown in Nitrospira indicate a significant difference (P < 0.001) between 
irrigated and rainfed conditions within the cotton phase in SBR. R: rainfed, I: 
irrigation, CR1: 1st - year CR, CR2: 2nd - year CR. 
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footprints, but SBR showed lower herbivore footprint than 1st-year CR 
(one-way ANOVA, P > 0.05). 

The alpha diversity of nematodes at the genus level was significantly 
affected by the interaction of rotation by irrigation (Table 2). The alpha 
diversity of nematode communities was higher under SBR as compared 
to CR plots (Fig. 2C). 1st-year CR plots had higher nematode alpha di-
versity than 2nd-year CR under irrigated conditions, although there was 
no difference under rainfed conditions. Nematode alpha diversity was 
significantly higher under irrigation relative to rainfed conditions only 
in 1st-year CR. Besides, PERMANOVA and ANOSIM tests showed that 
nematode communities were significantly affected by rotation (R2 =

0.59, P < 0.001), and SBR induced distinct nematode communities 
relative to CR systems (Fig. 2D; Table 3, and Supplementary Table S4). 

3.3. Effect of cropping systems on trophic interactions 

Linear correlations were used to correlate irrigation, bacterial and 
nematode diversity and community composition, and major NMFs 
under each cropping system (Fig. 5). In the SBR system, irrigation, 
NMFs, and the relative abundance of some microbial taxa and nematode 
functional groups were significantly correlated (Fig. 5A). In particular, 
irrigation had a significant and positive effect (P < 0.05) on the relative 
abundance of dominant microbial taxa (e.g., Gammaproteobacteria, 
Deltaproteobacteria, and Nitrospira) and the abundance of nematode 
functional groups (e.g., BFN and omnivorous nematodes). There were 
also significant correlations between C- and N-associated bacterial taxa: 
the relative abundance of Ca. Nitrosophaera was correlated with that of 

Table 1 
Effects of crop rotation and irrigation on the alpha diversity and composition of the bacterial community based on a linear mixed model, where the field plot number 
was used as a random effect.   

Rotation Irrigation Rotation × irrigation  

F P F P F P 

Bacterial alpha diversity  0.29  0.75  0.66  0.43  0.41  0.68 
Alphaproteobacteria  6.59  0.01*  1.33  0.27  1.12  0.36 
Betaproteobacteria  0.04  0.96  1.14  0.31  0.81  0.47 
Gammaproteobacteria  3.51  0.07  0.20  0.66  1.12  0.36 
Deltaproteobacteria  4.17  0.04*  1.90  0.19  0.21  0.82 
Acidobacteria  1.80  0.21  0.02  0.91  2.29  0.14 
Actinobacteria  1.00  0.40  6.21  0.03*  0.15  0.86 
Bacteroidetes  0.02  0.98  0.28  0.61  2.20  0.15 
Ca. Nitrososphaera  8.74  <0.01**  1.95  0.19  0.96  0.41 
Nitrosotalea  2.30  0.14  3.79  0.08  0.96  0.41 
Nitrospira  11.95  <0.01**  11.03  <0.01**  7.83  <0.01** 

*, **, and *** represent significant effects (marked in bold) at P < 0.05, 0.01 and 0.001, respectively. 

Fig. 2. Alpha (mean ± standard error) and beta diversity of bacterial (A and B) and nematode communities (C and D). In A and C, uppercase and lowercase letters 
indicate significant differences (P < 0.05) among cotton phases in crop rotations in irrigated and rainfed plots, respectively. The asterisk indicates a significant 
difference (P < 0.05) between irrigated and rainfed conditions within the 1st-year CR. For beta diversity (B and D), ellipses indicate 95% confidence intervals for each 
cotton phase in crop rotation systems. R: rainfed, I: irrigation, SBR: sod-based rotation, CR1: 1st – year CR, CR2: 2nd – year CR. 
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Actinobacteria (r = 0.70, P = 0.01) and Betaproteobacteria (r = − 0.78, 
P < 0.01), and the relative abundance of Nitrospira was associated with 
that of Deltaproteobacteria (r = 0.61, P = 0.03), Bacteroidetes (r = 0.85, 
P < 0.001), and Acidobacteria (r = − 0.68, P = 0.01). In addition, free- 
living nematodes had strong relationships with bacterial communities: 
BFN and omnivorous nematodes were positively associated with the 
relative abundance of Gammaproteobacteria (r = 0.88, P < 0.001; r =
0.62, P = 0.03) and Nitrospira (r = 0.67, P = 0.01; r = 0.73, P < 0.01), 
and there was also a positive correlation between omnivorous nema-
todes and the relative abundance of Bacteroidetes (r = 0.77, P < 0.01). 

In contrast to SBR, there were stronger correlations between irriga-
tion and bacterial or nematode diversity and community composition in 
CR plots than between irrigation and individual taxa or groups (Fig. 5B 
and C). Specifically, nematode diversity and community composition 
were sensitive to irrigation in 1st-year CR, and irrigation significantly 
affected bacterial diversity in 2nd-year CR. However, the trophic asso-
ciations between bacterial and nematode communities were weaker in 
CR relative to SBR. In 1st-year CR, nematode alpha diversity was posi-
tively correlated to the relative abundance of Nitrospira (r = 0.64, P =
0.03) and negatively linked to PPN abundance (r = − 0.86, P < 0.001), 
whereas the opposite trend occurred between nematode community 
composition and Nitrospira (r = − 0.75, P < 0.01) and PPN (r = 0.93, P 
< 0.001). In 2nd- year CR, nematode alpha diversity was negatively 
linked to the relative abundance of Actinobacteria (r = − 0.72, P < 0.01), 
nematode community composition (r = − 0.98, P < 0.001), and PPN (r 

= − 0.94, P < 0.001), but positively related to bacterial community 
composition (r = 0.71, P < 0.01) and the relative abundance of Acid-
obacteria (r = 0.75, P < 0.01). In contrast to nematode alpha diversity, 
nematode community composition had contrasting correlations with the 
bacterial community composition (r = − 0.64, P = 0.02), the relative 
abundance of Acidobacteria (r = − 0.71, P < 0.01) and Actinobacteria (r 
= 0.66, P = 0.02), and PPN (r = 0.92, P < 0.001). 

A structural equation model (SEM) was constructed to further 
quantify the effects of crop rotation and irrigation on the bacterial and 
nematode diversity as well as NMFs (Fig. 6). Nematode alpha diversity 
(path coefficient = 0.88, P < 0.001) was more sensitive to crop rotation 
than bacterial alpha diversity (path coefficient = − 0.19). Rotation (path 
coefficient = − 0.96, P < 0.001) and nematode alpha diversity (path 
coefficient = − 0.84, P < 0.001) had significant negative effects on 
NMFs. However, there were no significant effects of irrigation on bac-
terial (path coefficient = − 0.22) and nematode (path coefficient = 0.11) 
alpha diversity and NMFs (path coefficient = 0.08). 

4. Discussion 

4.1. Microbial community composition and interactions 

There were no significant differences in terms of microbial diversity 
and community composition when comparing SBR, 1st-year, and 2nd- 
year CR, in contrast to previous studies (Chamberlain et al., 2020; Chen 
et al., 2020a, 2020b), where cropping systems distinctly influenced soil 
bacterial community assembly. This may be because the effect of cover 
crops on bacterial communities was stronger than legacy effects of crop 
rotations, as we collected soil samples before planting cash crops and 
after cover cropping taking place in all plots. However, the relative 
abundance of some dominant microbial taxa changed in response to 
crop rotation systems and associated management. For example, SBR 
and 1st-CR had a higher relative abundance of Gammaproteobacteria 
(marginally significant at P < 0.1) but a significantly lower relative 
abundance of Alphaproteobacteria in comparison to 2nd-year CR. This 
could be due to the previous crop being peanut in SBR and 1st-CR vs. 
cotton in 2nd-year CR. Specifically, peanut has higher litter quality than 
cotton (e.g., higher N concentration, lower C/N ratio and concentration 
of phenol and lignin), which facilitates the growth of copiotrophic 
bacteria, such as Gammaproteobacteria (Ho et al., 2017; Pan et al., 
2019). In contrast, cotton residues with lower N and P concentrations 
should favor the growth of oligotrophic bacteria, e.g., Alphaproteobac-
teria (Ho et al., 2017; Pan et al., 2019). 

The higher relative abundance of Nitrospira under SBR than CR 
systems indicates that Nitrospira, and potentially nitrification, was of 
greater importance in the SBR system. This greater relative abundance 
of Nitrospira may be driven by greater N release from the decomposition 
of peanut residues under SBR than under CR systems (Supplementary 
Table S2; Katsvairo et al., 2007c, 2009; Zhao et al., 2010). In addition, 
Nitrospira can be a dominant nitrite oxidizer or comammox (where one 
kind of nitrifier drives the complete oxidation of ammonia to nitrate) in 
agroecosystems (Attard et al., 2010; Han et al., 2017, 2018; Wang et al., 
2019). This suggests a greater reliance on microbial-derived N trans-
formations in SBR systems relative to CR, although this would need to be 
confirmed in future studies. 

The greater number of significant paired Pearson correlations (P <
0.05) among different microbial groups in SBR compared to CR systems 
suggests that higher rotational diversity under SBR can stimulate mi-
crobial interaction complexity. In addition, we found that some in-
teractions among microbial communities existed in the cotton phase of 
rotation systems specifically. For example, Nitrospira had significant 
relationships with Acidobacteria and Bacteroidetes in SBR, but Nitro-
spira and Deltaproteobacteria were tightly related in 1st-year CR. These 
results are consistent with previous studies where changes in plant di-
versity affected soil microbial interactions (Bakker et al., 2013; Schlatter 
et al., 2015). This indicates that diverse plant communities may increase 

Fig. 3. Density (mean ± standard error) of dominant nematode groups in 
cotton plots under sod-based rotation (SBR) and conventional rotation (CR) 
systems. The percentage inside each bar indicates the percent of total nematode 
abundance that this group accounts for. Lowercase letters indicate significant 
differences (P < 0.05) among cotton phases in crop rotations, based on a sig-
nificant main effect of crop rotation in the ANOVA. R: rainfed, I: irrigation, 
CR1: 1st - year CR, CR2: 2nd - year CR. 
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the number of microbial interactions by creating different environ-
ments, which could impact soil resources (e.g., C, N, SOM) that play a 
critical role in shaping microbial interactions (Schlatter et al., 2015; 
Trivedi et al., 2020). 

4.2. Rotational effects on microbial-nematode interactions 

Some nematode functional groups (e.g., omnivorous and predatory 
nematodes) were absent or had a low abundance under CR, and CR also 
had a lower Shannon diversity for nematodes compared with SBR. This 
implies that the greater crop diversity in SBR systems sustained a more 
diverse soil community and thereby fostered more robust and complex 
soil food webs, which could help control PPN through top-down regu-
lation (Delgado-Baquerizo et al., 2017; da Silva et al., 2018; Zhang et al., 
2021). A more diverse soil community also increases the likelihood that 
plants develop strong relationships with beneficial soil communities that 
could inhibit the attack of herbivores or pathogens (van der Heijden 
et al., 2008). This is consistent with the substantially lower abundance of 
PPN observed in SBR compared to CR. Besides, there are fewer host 
crops in SBR for the growth of PPN, such as reniform nematodes, 
resulting in lower PPN abundance (Schumacher et al., 2020). 

The positive relationships observed between BFN and soil bacterial 
taxa (e.g., Gammaproteobacteria and Nitrospira) under SBR differ from 
previous studies (Castillo et al., 2017; Neher, 2010), where bacterial 
communities were negatively correlated with their predators due to top- 
down control. Positive biological linkages between bacterial taxa and 
their predators in SBR systems can be interpreted as bottom-up control 
driven by resource availability at the base of soil food webs, where the 
greater abundance of lower trophic levels leads to greater productivity 
at higher trophic levels (Hoekman, 2010). This is consistent with 
Scherber et al. (2010), who reported that plant diversity had a strong 
bottom-up effect on multitrophic interaction networks. Besides, positive 
relationships between higher trophic levels (e.g., omnivorous and 
predatory nematodes) and some microbial taxa (e.g., Nitrospira, Gam-
maproteobacteria, Deltaproteobacteria, and Bacteroidetes) suggest that 
bottom-up trophic cascades also occurred under SBR systems, which 
indirectly mediated higher trophic levels. Given that trophic network 
complexity can be a valid proxy for ecosystem functions and processes 
(McDaniel et al., 2014; Bender et al., 2015; Yang et al., 2018), these 
results suggest that the SBR system may increase C content and soil 

Fig. 4. Major nematode metabolic footprints (NMFs, mean ± standard error) under conventional (CR) and sod-based rotation (SBR). Lowercase letters indicate a 
significant difference (P < 0.05) among cotton phases in crop rotations, based on a significant main effect of crop rotation in the ANOVA. R: rainfed, I: irrigation, CR1: 
1st - year CR, CR2: 2nd - year CR. 

Table 2 
Effect of crop rotation and irrigation on the alpha diversity of all identified 
nematode taxa, the major functional nematode groups and dominant metabolic 
footprints based on a linear mixed model, where the field plot number was used 
as a random effect.   

Rotation Irrigation Rotation ×
irrigation  

F P F P F P 

Nematode alpha 
diversity  

61.28  <0.001***  1.64  0.23  4.50  0.03* 

Plant-parasitic 
nematodes  

17.59  <0.001***  0.70  0.42  0.84  0.46 

Bacterial-feeding 
nematodes  

2.72  0.11  0.25  0.63  2.39  0.13 

Enrichment footprint  6.32  0.01*  0.01  0.92  1.83  0.20 
Herbivore footprint  30.95  <0.001***  1.92  0.19  2.05  0.17 
Bacterivore footprint  5.32  0.02*  0.01  0.98  1.67  0.23 

*, **, and *** represent significant effects (marked in bold) at P < 0.05, 0.01 and 
0.001, respectively. 

Table 3 
The effects of crop rotation and irrigation on bacterial and nematode commu-
nities based on PERMANOVA.    

Rotation Irrigation Rotation × irrigation 

Bacterial community R2  0.13  0.06  0.11 
P  0.25  0.28  0.47 

Nematode community R2  0.59  0.01  0.09 
P  <0.001***  0.50  0.15  

*** represents significant effects (marked in bold) at P < 0.001. 
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nutrient availability (Supplementary Table S2). Similarly, a meta- 
analysis conducted by King and Blesh (2018) concluded that inte-
grating perennial crops into rotations increased soil organic C by 6.2% 
on average relative to grain-only rotations. Although direct measure-
ments of C and nutrient cycling would be required to confirm this link 
between changes in soil communities and ecosystem function, the 
greater N and P acquisition previously found in cotton plots for SBR 
compared to CR systems at this site are consistent with this interpreta-
tion (Supplementary Table S2; Katsvairo et al., 2007a, 2007b, 2009; 
Zhao et al., 2009; Dourte et al., 2016). 

Moreover, nematode metabolic footprints that represent C and en-
ergy flow in soil food webs based on functional guilds (Ferris, 2010) 
showed that SBR had a higher bacterivore and enrichment footprint 
compared to 2nd-year CR. This indicates a stronger response to C 
resource enrichment that includes the activity of primary decomposers 
and lower trophic levels of nematodes (Ferris et al., 2012; Hodson et al., 
2014). Positive correlations between Gammaproteobacteria and 
enrichment and bacterivore footprints indicate that the flow of C and 
energy was driven by r-strategists for bacterivory pathways in SBR plots. 
These results suggest that SBR increases the quantity and quality of C 
resources, most likely because bahiagrass increases root biomass and 
root mass of subsequent crops by increasing the rooting depth, root area, 

and root length of subsequent crops (Wright et al., 2004; Katsvairo et al., 
2007c). Additionally, the greater omnivore, predator, and structure 
footprints under SBR relative to 2nd-year CR indicate greater produc-
tivity and turnover rates of enrichment indicators, which could meet the 
growth requirements of higher trophic groups and maintain the nema-
tode metabolic balance (Ferris, 2010). 

In CR systems, a greater herbivore footprint, regardless of irrigation, 
suggests that resources entered soil food webs mainly through herbivory 
pathways. Furthermore, PPN abundance was tightly correlated with 
some bacterial taxa, including k-strategist bacteria (e.g., Acidobacteria 
and Nitrospira) and r-strategists (Actinobacteria). This could be driven 
by a greater release of root exudates due to PPN damage, generating a 
labile C source that would stimulate the growth of r-strategist bacteria 
(Denton et al., 1998; Gebremikael et al., 2016; Zhang et al., 2021). 
Simultaneously, lower root biomass and root mass observed in the PPN- 
enriched CR system should decrease inputs of recalcitrant root C into the 
soil (Wright et al., 2004; Katsvairo et al., 2007c), which should be less 
conducive to the growth of k-strategist bacteria (Verbon and Liberman, 
2016). 

Fig. 5. Pearson correlations among irrigation, major microbial taxa, nematode functional groups, and nematode metabolic footprints (NMFs) in cotton plots under 
sod-based rotation (A), 1st- year (B) and 2nd - year (C) conventional rotation system. *, **, and *** mark significance at P < 0.05, 0.01, and 0.001, respectively, after 
correction for multiple comparisons using the Bonferroni-Holm method. %: relative abundance. 
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4.3. Response of soil communities to irrigation under different cropping 
systems 

Previous studies indicated that SBR can reduce irrigation re-
quirements due to greater water infiltration and WHC at shallow depths, 
along with the deeper and extensive root systems of bahiagrass that can 
overcome soil compaction at deeper depths (Katsvairo et al., 2006, 
2007a; Dourte et al., 2016). However, these studies did not assess how 
SBR and irrigation affected microbial community structure and their 
associations with dominant soil fauna (e.g., nematodes). Several studies 
have demonstrated that water availability was a major driver that 
altered the composition, diversity, and abundance of soil organisms 
(Brockett et al., 2012; Holland et al., 2013; Sorensen et al., 2013; Frindte 
et al., 2019). However, our results showed that irrigation only stimu-
lated the growth of some soil microbial groups (e.g., Gammaproteo-
bacteria, Deltaproteobacteria, and Nitrospira) under SBR. This could be 
due to the higher water infiltration rate as well as greater C and N inputs 
found in SBR systems (Katsvairo et al., 2007a, 2007c, 2009; Zhao et al., 
2010), providing adequate resources and ultimately stimulating their 
growth (Supplementary Table S2; da Silva et al., 2021; Karuri, 2021). 
Our study also found a direct correlation between water availability and 
the abundance of some nematode groups (e.g., BFN and omnivorous 
nematodes), in agreement with the large water requirements of nema-
todes for movement and activity (Franco and Gherardi, 2019). This is 
consistent with a recent study reporting lower nematode abundance 
with increasing aridity in grassland ecosystems (Xiong et al., 2019). 

Irrigation had no effect on bacterial and nematode diversity (as 
measured by Shannon's index) and structure (as measured by the NMDS) 
under the SBR system, although some soil bacterial and nematode 
groups were associated with irrigation. In contrast, irrigation exerted a 
great impact on nematode diversity and structure in 1st-year CR and 
bacterial diversity in 2nd-year CR. These results are consistent with 
previous studies where irrigation significantly influenced soil below-
ground communities under low-diversity cropping systems (Porazinska 
et al., 1998; Ma et al., 2020), suggesting that soil belowground com-
munities underpinned by high rotational diversity in SBR may develop 
greater resistance to changes in soil water content (Dourte et al., 2016; 

Isbell et al., 2015; Beaury et al., 2020). This is probably due to the 
greater water availability in the SBR system caused by increased SOM 
and lower bulk density that result in better water retention and ulti-
mately lower irrigation demand relative to CR (Katsvairo et al., 2007a; 
Dourte et al., 2016). 

5. Conclusion 

Overall, we found a strong influence of cropping systems on soil 
community assembly, especially nematode diversity and community 
structure. Our first hypothesis was partially supported, as integrating 
bahiagrass into the peanut and cotton rotation system increased nema-
tode diversity and resulted in different nematode communities 
compared to CR, but it had no effect on the diversity and structure of 
bacterial communities. There was also a greater number of significant 
paired correlations between bacterial and nematode communities in 
SBR relative to CR systems, suggesting SBR led to more complex trophic 
interactions between bacterial and nematode communities. Consistent 
with our second hypothesis, SBR suppressed the growth of PPN but 
promoted free-living nematode populations (e.g., fungal-feeding nem-
atodes and predatory nematodes). Simultaneously, irrigation had no 
effect on the diversity and structure of bacterial and nematode com-
munities under the SBR system, although some soil bacterial and nem-
atode groups were associated with irrigation. This implies that soil 
belowground communities in SBR may develop greater resistance to 
changes in soil water content, which supports our third hypothesis. 
Ultimately, our study demonstrated that high rotational diversity asso-
ciated with the SBR system can foster robust soil food webs with com-
plex soil trophic interactions, which could promote agroecosystem 
functions and processes (e.g., increasing nutrient availability and de-
fense against plant pathogens) and reduce requirements in external re-
sources (e.g., fertilization, irrigation, and fumigation) (Fig. 7). Future 
studies are needed that combine data on soil biological communities and 
C and nutrient cycling to validate the connections outlined in this study 
and better quantify the role of soil communities in greater crop rotation 
complexity with higher functional trait diversity. 

Fig. 6. Structural equation model (SEM) illustrating 
the effects of irrigation and crop rotation on bacterial 
and nematode diversity and nematode metabolic 
footprints (NMFs). Continuous and dashed arrows 
show significant and nonsignificant relationships be-
tween two measured variables, respectively. Arrows 
with two heads indicate the interplay between two 
measured variables. Values adjacent to the arrows 
represent path coefficients, and the width of arrows 
shows the strength of path coefficients. *, **, and *** 
indicate significance at P < 0.05, 0.01, and 0.001, 
respectively. Red and green arrows indicate positive 
and negative relationships of two variables, respec-
tively. R2 shows the proportion of variance explained 
by the model for each variable. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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