Combining aerial images and soil sampling to monitor N and P fertility for Dairy farms in New England

Presentation by:

- Wayne Roper
- Richard Meinert

- Dairy farms regularly apply cow manure to silage corn fields
- Farmers may apply more manure to fields than is necessary, which causes environmental concerns and is an inefficient use of manure nutrients across fields over time

- This project was designed to give dairy farmers more perspective about management of N of P from dairy cow manure
- We hope that farmers will move manure to where it is most needed among their fields

Project objectives

- 1. Survey 60–70 silage corn fields in CT, MA, and ME
- 2. Capture aerial imagery of fields during corn maturity
- 3. Assess soil nutrients and mineralization in all fields
- 4. Spatial analysis of nutrients in select fields
- 5. Use the information to recommend management strategies to farmers

Part 1: Contact farmers throughout New England

Participants:

• 3 states

00 00

0

- 33 farmers
- 4 ag consultants

• • •

600 6006

80

Maine: 24 fields

0 00

Massachusetts: 18 fields

Connecticut: 25 fields

Part 2: Capture aerial images during peak corn growth stages

Part 3: Collect fall soil samples

Measurements:

- Nitrate
- Nutrients
- Organic matter
- CO₂ burst
- SLAN

2018 -> 2019 -> 2020

Part 4: structured grid sampling for nutrients

Collect soil samples in a grid pattern to learn how nutrient concentrations vary across a field

Summary of nutrient concentrations, 2018-2020

• • •

00 00

0

0

80 gage

0

80

00

8

0

Yearly summary Fall nitrate

expectations for pre-sidedress N test

Yearly summary Fall nitrate with rainfall

	Connecticut		Massachusetts		Maine				
	Seasonal Rainfall	Difference from normal	Seasonal rainfall	Difference from normal	Seasonal rainfall	Difference from normal			
	Inches of rainfall from May 1 – Sep 30								
2018	28	+7	32	+12	16	-4			
2019	15	-6	14	-6	25	+5			
2020	8	-13	15	-5	12	-8			

Yearly summary Phosphorus

Yearly summary Solvita labile amino N

	Year	Min	Average	Max
			ppm	
СТ	2018	48	137	228
	2019	71	150	236
MA	2018	68	122	245
	2019	72	113	188
ME	2018	105	155	215
	2019	86	173	334

Yearly summary CO₂ burst

	Year	Min	Average	Max	
		ppm			
СТ	2018	50	90	143	
	2019	26	76	125	
MA	2018	62	87	132	
	2019	14	52	89	
ME	2018	_	-	-	
	2019	19	92	168	

Summary of nutrient concentrations over 3-year period

• When rainfall is abundant, more N is needed to supplement losses in residual manure N

0

- When rainfall is scarce, less N is needed because there is less leaching
- P concentrations are consistent over short-term periods
- Biological tests are helpful for predicting mineralization potential from soil organic matter

Relationships between aerial images and fall nitrate concentrations

Optimum corn and fall nitrate

Yellow corn, low nitrate

Fall NO₃ - 7 ppm **P** - 41 lb/ac

Apply **MORE** manure or fertilizer N (without exceeding P recommendation)

Yellow corn, high nitrate

Dry summer/fall after corn matures

Green corn, low nitrate

Wet summer/fall after corn matures

Green corn, high nitrate

Apply LESS manure or fertilizer N

Other notable patterns in aerial images

Other notable patterns in aerial images

Relationships between aerial images and fall nitrate concentrations

- Aerial images provide farmers with more perspective to assess corn growth in response to planting conditions, manure, fertilizer, and weather
- Early season: aerial images inform about proper midseason decisions for N
- Late season: aerial images inform about changes that should be made the next year
- Combine images with soil sampling to improve efficiency of whole-field and whole-farm management

Using grid sampling to assess spatial variability of nutrients

Spatial variability of NO₃ and P compared to aerial images

Spatial variability of NO₃ and P compared to aerial images

Spatial variability of NO₃ and P compared to aerial images

Hotspots unmatched

Spatial variability of NO₃ and P compared to aerial images No P hotspots

Using grid soil sampling to assess spatial variability of nutrients

- P patterns reveal long-term management patterns of manured fields
- Nitrate pattern is ephemeral, and represents temporary nutrient application patterns
- Corn color in aerial images does not always reflect soil nutrient patterns

Overall conclusions

- Tracking nitrate concentrations from season to season informs about N released from fields over years of dairy cow manure applications
- Combining aerial images with nitrate data can be a better guide for farmers with the capability of adjusting manure management from year to year
- Aerial images provide important perspective to inform farmers about how management decisions affect corn growth

Implications and future work

Implications

- Yearly spring and fall NO₃ soil samples can inform farmers about nutrient uptake by corn and nutrient storage in organic matter from manured fields (in addition to cornstalk NO₃ test)
- A consistent NO₃ surplus could be converted into cover crop to reduce nutrient runoff and reduce reliance on N fertilizer
- Aerial images may become a regular component of short-term nutrient management decisions for dairy farms

Future work

- Combine yield data with soil sample data to show where farmers should focus nutrient applications to improve whole-farm corn production
- Use aerial images to predict corn yield
- Conduct grid sampling in more silage corn fields to detect more management patterns that should be accounted for in nutrient management plans

Acknowledgements

<u>UConn</u>

- Thomas Morris
- Richard Meinert
- Karl Guillard
- Dominec Rossi
- Joseph Anderson
- UConn Soil Lab

<u>UMass</u>

- Masoud Hashemi
- Cameron Richards

UMaine

- John Jemison
- Richard Kersbergen
- Maine Soil Testing Service

Others

• Woods End Laboratories

