Assessing the Impacts of Mob Grazing in Southern Oregon

Funded by a grant from the Western Sustainable Agriculture Research and Education Program

What is Mob Grazing?

- Ultra-High Density, Short Duration Grazing
 - Generally measured in pounds per acre
 - Often residency periods of 24 hours or less

What is Mob Grazing?

- Focus is on residual rather than consumption
 - Potentially high amounts of forage trampled
 - Trampled forage not considered wasted
 - Keep soil covered and feed soil microbes
 - Long rest periods
 - 90 days to a year or more
- Fewer herds, more paddocks
 - less labor?

Purported Benefits

- Increased organic matter in the soil
 - Increased water infiltration and water holding capacity (increased resilience to drought)
- Healthier soil microbes and greater nutrient availability
 - constant soil cover and feed resources
- Increased forage production and plant density
- Increased carrying capacity
- Increase in variety/number of forage species
 - Increase in natives and perennials

University of Wisconsin Study

- 200 producers asked to define mob grazing
- 40,000 lbs to 2 million lbs live cattle/acre
 - Average was \$200,000 pounds per acre
- Most producers defined it as:
 - High stock density
 - Longer rest periods
 - Shorter graze periods
 - Constant moves
 - Forage trampling

Background

Study Structure

- Funded by a grant from the Western Sustainable
 Agriculture and Education Program
- Professional + Producer Grant
 - Fairly small budgets, specific allowable categories
 - Must be producer driven
 - Minimum of 5 producers + 1 professional
- 3 field-year trial
 - revert to standard winter management in offseason
 - Season ended by first killing frost

Study Structure

- 3 "sites" providing replicates
 - Ashland (Burch and Winters)
 - Eagle Point (Boyer and Jackson)
 - Central Point (Martin)
- Data analyzed within site only
 - No comparison between sites
- Concerned with trends due to management (treatments)

Study Structure

- 3 treatments with 3 randomized replicates per treatment
 - MOB at least 300,000 pounds per acre equivalent
 - BAU variations of MiG
 - Control varies by site
 - Haying followed by continuous grazing (Boyer/McCullough)
 - Total exclusion/no grazing (Martin)
 - Frequent grazings; shipping/gathering field (Burch/Winters)

Central Point - Martin

- Sandy loam soil
- Flat
- Flood irrigated
- Grazed with cattle
- Historically managed with managementintensive grazing (MiG)
- Area previously planted in warm-season Eastern Gamagrass
- Control is total exclusion

Ashland - Burch/Winters

- Clay soils
- Southern exposure hillside
- Sprinkler irrigated
- Grazed with cattle
- Historically managed with MiG trending towards mob grazing
- Control is shipping pasture (frequent grazings with no particular schedule)

Eagle Point – Boyer/Jackson

- Heavy clay soils
- Mostly flat, trending north
- Flood irrigated
- Grazed with sheep, control with cattle
- Historically managed with MiG
- Control is hayed 1st cutting, then continuously grazed

Parameters - Soil

- To characterize site:
 - Soil type
 - Historical Use
 - Climate/weather
 - Aspect and slope
 - Irrigation type and frequency
 - Type of livestock
 - Fertilization and worming practices

Parameters - Soil

- Baseline (Beginning and end of study)
 - -pH
 - Quick Hydrometer (soil texture)
 - CEC (ability to hold and exchange cations)
 - Mehlich 3 (P, K, Ca, Mg, Na and micronutrients)
 - Walkley-Black OM
 - Total CN
 - C:N Ratio
 - Bulk density (indicator of soil compaction)

Parameters – Soil

- Baseline, con't
 - Aggregate stability
 - Infiltration rate
 - Soil microbes (Total/Active Fungi and Bacteria)

Parameters - Soil

- Beginning and End of Season
 - Soil cover (percentage)
 - Soil Health (Haney lab)
- 48 hours post irrigation (each cycle)

Soil moisture (volumetric water content, water

volume:soil volume)

Soil Temperature

Parameters – Forage

- Beginning and End of Season
 - Species composition
- Every Grazing
 - Production

Specific Tests

Haney Soil Health

- Focuses on NPK and how soil microbes affect those elements
- Uses soil extracts that occur naturally in the soil
- Attempt to make fertilization more effective
- Also measure microbial food
- Standard lab analyses accounts for ~1/2 of N in soil, but plants can access IO and O N from soil OM
- Uses a variety of tests, combines the results

Haney Soil Health

- Nitrogen uses 9 tests/ratios
- P 7 different extractants, 9 tests/ratios
- Tool combines
 - Solvita (soil respiration)
 - Water soluble organic C
 - Water soluble organic N
 - Organic C:N ratio (Balance)
- Provides a single health score and a cover crop suggestion to balance the soil (if applicable)

Haney Soil Health

- Combines biological and chemical properties
- A picture of overall soil health
- Tracks effect of management over time
- Not comparable region to region
- Scores above 7 considered good
 - 7 is average across the country
 - Average fertilizer savings is \$27/acre
- Soils with same OM can have different N and P mineralization; therefore different score

Martin Soil Health Results

Burch Soil Health Results

Boyer Soil Health Results

Earthfort Testing

- Total bacteria indicates abundance of food for predators, nutrient cycling capacity, and general diversity
- Active bacteria is component of total biomass that is currently metabolizing oxygen

(functional fraction)

Earthfort Testing

- Total fungi indicates nutrient retention, soil structure and relationship to pH
- Fungal hyphae diameter helps determine fungal population diversity and whether beneficial
 - Diameters greater than 2.5 ideal
- B:F ratio indicates
 stage of succession

Baseline Earthfort Results

Unique ID	AB	ТВ	AF	TF	DIA	TF:TB	AF:TF	AB:TB	AF:AB
CB-B1	41.28	1484.00	48.98	717.28	2.90	0.48	0.07	0.03	1.19
CB-B2	61.90	2016.00	40.12	966.41	2.90	0.48	0.04	0.03	0.65
CB-B3	46.10	1632.00	10.06	677.01	2.85	0.41	0.01	0.03	0.22
AVE	49.76	1710.67	33.06	786.90	2.88	0.46	0.04	0.03	0.68
CB-X-1	131.62	743.00	19.28	1012.83	2.85	1.36	0.02	0.18	0.15
CB-X-2	109.73	1220.00	34.39	1148.85	2.80	0.94	0.03	0.09	0.31
CB-X-3	135.58	1277.00	29.60	882.75	2.80	0.69	0.03	0.11	0.22
AVE	125.64	1080.00	27.76	1014.81	2.82	1.00	0.03	0.12	0.23

Martin Soil Temperatures

Martin Soil Moisture (%)

