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A B S T R A C T   

An unmanned ground-based canopy density measurement system to support precision spraying in apple orchards 
was developed to precisely apply pesticides to orchard canopies. The automated measurement system was 
comprised of a light detection and ranging (LiDAR) sensor, an interface box for data transmission, and a laptop 
computer. A data processing and analysis algorithm was developed to measure point cloud indices from the 
LiDAR sensor to describe the distribution of tree canopy density within four sections according to the position of 
the trellis wires. Experiments were conducted in two orchard sites, one with GoldRush (larger trees) and the 
other one with Fuji (smaller trees) apple trees. Tree leaves were counted manually from each section separated 
by trellis wires. Field evaluation results showed a strong correlation of 0.95 (R2 = 89.30%) between point cloud 
data and number of leaves for the Fuji block and a correlation of 0.82 (R2 = 67.16%) was obtained for the 
GoldRush block. A strong correlation of 0.98 (R2 

= 95.90%) was achieved in the relationship between canopy 
volume and number of leaves. Finally, a canopy density map was generated to provide a graphical view of the 
tree canopy density in different sections. Since accurate canopy density information was computed, it is antic
ipated that the developed prototype system can guide the sprayer unit for reducing excessive pesticide use in 
orchards.   

1. Introduction 

Conventional agriculture relies heavily on a high-level use of plant 
protection products, commonly known as pesticides. Pesticides play a 
critical role in increasing crop quality and productivity. Oerke et al. 
(2012) suggested that failure to use plant protection products against 
insects, diseases, pests, and weeds could result in up to 65% of crop yield 
losses. On the contrary, pesticide misuse represents a serious concern 
about their adverse impact on the non-targets, including humans, 
environment, and ecosystems (Alavanja et al., 1996; Deveau, 2009). 
Additionally, pesticide use caused about $8.2 billion in annual envi
ronmental and economic losses in the United States (Pimentel & 
Burgess, 2014). To address this concern, the reduction of plant protec
tion products is very important and crucial when considering agricul
tural sustainability and profitability. 

Current development of innovative management strategies has 

shown a significant reduction of pesticides and improves efficacy and 
safety by adopting the modern breakthrough in electronics (Ampatzidis 
et al., 2018). Precision spraying is one of the modern crops management 
strategies that assist management decisions (e.g. spraying) according to 
estimated variability in the field, aiming to reduce agricultural inputs. 
Precision spraying strategies have been utilized by researchers in the 
recent few decades for site-specific managements including weeds 
(Hunter et al., 2020), diseases (Yang, 2020), and pests (Zhong et al., 
2018). The core concept of precision spraying is to adjust the spray 
volume by controlling nozzle flow rate. 

Adjustment of the spray deposits according to the tree canopy 
characteristics offers the chance of decreasing pesticide use and envi
ronmental contamination (Nan et al., 2019). The tree canopy foliage 
plays an important role in determining the amount of spray volume 
required in an individual tree. However, tree canopies are not uniform in 
terms of density and volume. The variability of canopy foliage density is 
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shown in Fig. 1. Identifying tree canopy foliage density can characterize 
the tree structure and determine the appropriate spray volume for pre
cise pesticide applications (Chen et al., 2012; Hu & Whitty, 2019; Wei & 
Salyani, 2005). It also helps to adjust the pesticide application rate, 
spray flow rate, and air supply volume to better manage the orchards 
while spraying (Gil et al., 2007; Jeon & Zhu, 2012; Llorens et al., 2010; 
Shen et al., 2017). 

A range of techniques used for measuring tree canopy foliage density 
characteristics has included visible-range camera sensor (Asaei et al., 
2019), ultrasonic sensor (Gil et al., 2007), spectral sensor, infrared 
sensor (He et al., 2011), and laser sensor (Chen et al., 2012; Liu & Zhu, 
2016). Despite the considerable efforts reflected in characterizing tree 
canopies, challenges still exist to accurately implement the developed 
strategies in real-time field conditions, due to uncontrollable weather 
conditions and system limitations. The performance of the precision 
management system is significantly reduced in the field conditions due 
to illumination variations, wind speed and direction, and system vi
brations when a camera-based sensing system is used (Asaei et al., 
2019). Ultrasonic based sensing systems provide inconsistent data due to 
the large angle of divergence of ultrasonic waves and uncontrollable 
environmental conditions in fields (Zhang et al., 2018). Similarly, 
studies have shown the difficulty of recording accurate data using 
spectral and infrared sensors due to high sensitivity to the outdoor field 
illumination and weather conditions (Zhang et al., 2018). Conversely, 
laser-based sensing techniques are not affected by the outdoor field 
weather conditions and provide more accurate detection results (Liu & 
Zhu, 2016). 

LiDAR (light detection and ranging) sensing is an active laser 
scanner-based remote sensing technique applied widely for tree canopy 
characterizations (Brandtberg et al., 2003; Holmgren & Persson, 2004; 
Hosoi & Omasa, 2006; Omasa et al., 2007). The LiDAR sensor emits an 
electromagnetic signal that can bounce off of the vegetation canopy 
enabling a view of the exterior structure and three-dimensional infor
mation of the tree. Calculation of tree canopy foliage density charac
teristics using a LiDAR sensor have been reported (Auat Cheein et al., 
2015; Berk et al., 2020; Chakraborty et al., 2019; Hu & Whitty, 2019). 
Auat Cheein et al. (2015) estimated three-dimensional structure of or
chard trees; in particular, real-time measurement of canopy volume and 
shape using a LiDAR sensor and computational geometry analysis. Re
sults reported that the accuracy was decreased up to 30%. Underwood 
et al. (2016) measured the tee canopy volume using terrestrial LiDAR 
scanner and achieved coefficient of determination (R2 = 0.77) for 
establishing the relationship between canopy volume and yield. Chak
raborty et al. (2019) used a mobile 3D LiDAR mapping system to 

measure canopy volume for apple trees and grapevines. They reported 
correlation values of 0.81 and 0.51 between manual and automatic 
measurements using Convex hull and Voxel grid methods, respectively. 
However, the Voxel grid method is computationally intense and is 
affected by the voxel size. The Convex hull method showed inferior 
performance compared to the Voxel grid method. Hu and Whitty (2019) 
evaluated a tree canopy density mapping system for a trellis-structured 
apple orchard where all points generated from an individual tree were 
included. However, a trellis-structured apple orchard may have many 
points produced by the wire-plane and also from the main tree trunk that 
need to be removed before canopy density calculation. Berk et al. (2020) 
established a relationship by conducting laboratory experiments for 
measuring tree leaf area, but low accuracies were reported. Among the 
studies surveyed, most researchers have tried to measure tree canopy 
density based on the volume of individual trees considering all points; 
however, the density of the whole tree cannot precisely guide the 
sprayer unit because the precision sprayer may have multiple nozzles on 
each side which need to be controlled separately. Section-based canopy 
density measurement leads to assessment of foliage density by dividing 
the tree into sections (e.g., bottom, middle, and top, etc.). The computed 
density information of the canopy sections can separately guide/control 
the corresponding nozzle facing each section. Since the precision 
spraying system requires nozzle flow rates to be continuously controlled 
during orchard spraying, the spray decision input, i.e., section-based 
tree canopy density information needs to be measured automatically. 

The primary goal of this study was to develop an automated section- 
based tree canopy density measurement system for precise pesticide 
spraying using a LiDAR sensor. The specific objectives were to: (i) 
establish a relationship between the point cloud and canopy foliage 
without considering trellis-wires, support poles, and tree trunk (ii) 
predict the number of leaves in each section with the density measure
ment algorithm (iii) measure the tree canopy volume and generate the 
canopy density map for providing guideline information for variable- 
rate spraying. 

In this study, we performed three major tasks based on LiDAR 
scanned data for tree canopy density and volume measurements: point 
cloud data acquisition, tree canopy points segmentation, and canopy 
density and volume measurements. Data were acquired through LiDAR 
integrated sensing system. A sample consensus algorithm was used to 
remove the ground points. Unnecessary points from tree trunks, trellis 
wires, and support poles were removed using a processing algorithm 
aimed to segment only canopy points. The canopy density and volume 
were measured, and canopy density map was generated. The canopy 
density map generated in this work provides a graphical view of tree 
leaves distributions in different sections, which can be used later for 
spraying operation in the orchards. 

2. Materials and methods 

2.1. Test orchards 

Two orchard sites with GoldRush (site 1: 39◦56′15.8′′N, 
77◦15′21.0′′W) and Fuji (site 2: 39◦56′19.1′′N, 77◦15′17.5′′W) apple 
varieties, located at Penn State Fruit Research and Extension Center 
(FREC), Biglerville, PA, USA, were used (Fig. 2). Both orchards use a 
trellis system to support trees, including three tiers of trellis wires and 
support poles. For the GoldRush block, the trees were trained as a tall 
spindle structure. The trees were planted in 2009 with an inter-row 
spacing of 6.10 m and intra-plant spacing of 1.20 m. The average tree 
height and width were 3.00 and 1.50 m, respectively. For the Fuji block, 
the trees were trained as a fruiting wall system with horizontal branches 
tied to the trellis wires. The trees were planted in 2016 with an inter-row 
spacing of 3.80 m and intra-plant spacing of 0.91 m. The average tree 
height and width were 2.75 and 1 m. Canopy foliage for GoldRush apple 
trees was denser than the Fuji variety (Fig. 2). 

Fig. 1. Canopy foliage density variabilities within an apple tree.  
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2.2. Sensor system integration and data acquisition 

A point cloud data acquisition system (Fig. 3) was developed by 
integrating a VLP-16 LiDAR scanner (Velodyne LiDAR, San Jose, CA, 
USA), an interface box for data transmission and power conversion, and 
a 64-bit Dell 3541 laptop computer (Dell, Round Rock, TX, USA) with an 
Intel® i7-9750 central processing unit (CPU) running at 2.6 Gigahertz, 
16 Gigabyte of Random Access Memory (RAM). The sensor was attached 
to an aluminum frame with a height of 1.70 m above the ground level, 
and the whole system was mounted on an orchard utility vehicle 
(Kubota, Osaka, Japan). Sixteen vertically separated beams produced by 
the LiDAR scanner with a range of 30◦ (+15◦ to − 15◦ up and down) and 
angular resolution of 2◦ were employed to scan the apple trees in the 
orchards. The sensor has the ability to scan up to 0.3 million points per 
second with a power consumption of 8 W and an operating voltage of 9 
to 32 Volt DC. The operating temperature of the sensor was − 10 ◦C to 
+60 ◦C with an accuracy of ±3 cm. 

A series of field experiments were conducted with the data acquisi
tion system to measure the canopy point cloud data. To evaluate the 
system performance, tests were conducted in the two orchard sites, 
including orchard site 1 on June 25th and orchard site 2 on June 30th, 
2020. Both experiments were conducted during sunny weather between 
4 and 5 PM with light wind. A graphical representation of the experi
mental setup is presented in Fig. 4. The utility vehicle was driven at the 
center of the row with travel speeds ranging between 5.5 and 6.5 km.h− 1 

during scans. The height of the trees ranged from 2.75 to 3 m and 2.2 to 
2.5 m in orchard site 1 and orchard site 2, respectively at the center/ 
middle of the tree row. The sensor to tree distances were 3.05 m and 
1.90 m for scanning at orchard site 1 and orchard site 2, respectively. 

Trees in a row were scanned from both sides to cover the entire canopy. 
In each orchard, a total of five consecutive trees located in a row were 
measured from both sides. The open-source VeloView software (Velo
dyne LiDAR, San Jose, CA, USA) was used to perform real-time visual
ization and recorded the live data stream. The point cloud data, namely 
the coordinates of the points, were stored in a laptop computer. These 
points represent the geometric coordinates of any object hit by the 
LiDAR during the scanning. A ‘Packet Capture or PCAP file’ contained 
the acquired point cloud data was collected. Files with extension ‘*. 
pcap’ from two orchards were stored. Average file size was 11.9 
Megabytes in our experiments. The internet protocol (IP) address of the 
laptop was changed before collecting the point cloud data for these 
experiments. 

2.3. Point cloud data processing 

With the acquired point cloud data, algorithms were developed to 
analyze tree canopy density and volume. The data processing procedure 
is illustrated in Fig. 5, including point cloud data pre-processing, canopy 
foliage estimation, canopy volume measurement, and density map 
generation. 

2.3.1. Point cloud data pre-processing 
Three-dimensional (3D) point cloud data were pre-processed using 

MATLAB® software (The MathWorks Inc, Natick, MA, USA) for tree 
canopy foliage density estimation. A Velodyne file reader function (i.e., 
velodyneFileReader) was used to read the raw scanned file (e.g., pcap) 
from the computer. Point cloud data were acquired for five consecutive 
trees in a row from two different orchards. The LiDAR sensor had a 

Fig. 2. Test orchards (a) GoldRush apple variety (b) Fuji apple variety.  

Fig. 3. Point cloud data acquisition system was driven by a utility vehicle.  
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scanning speed of five frames per second. A total of 35 frames were 
recorded from orchard site 1 and 28 frames from orchard site 2. The 
LiDAR acquired about six to seven frames for one tree in orchard site 1, 
and four to five frames in orchard site 2 due to the smaller tree spacing, 
using the set driving speed. Some frames overlapped between two trees. 
Five separate frames were selected for each orchard site (five trees). The 
scanned points were then localized with the origin point at the center of 
the sensor. A coordinate system was defined where the x-axis was along 
the tree row, the y-axis was perpendicular to the tree row, and the z-axis 
was vertically upward along the tree trunk. Since the LiDAR was vertical 
to the ground during the experiments, the scanned point cloud data were 
orientated at 90◦ counter-clockwise. The transformation was conducted 
in two phases at the defined coordinate; in the first phase each coordi
nate of the data was rotated counter-clockwise around the z-axis; in the 
second phase, the resulting coordinate was rotated clockwise around the 
y-axis according to Eqs. (1) and (2). 

Counter-clockwise rotation (90◦

) around z-axis 

Rz(γ = 90◦

) =

⎡

⎢
⎢
⎣

cosγ − sinγ 0 0
sinγ cosγ 0 0

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ (1) 

Clockwise rotation (90◦

)around the y-axis 

Ry(β = 90◦

) =

⎡

⎢
⎢
⎣

cosβ 0 − sinβ 0
0 1 0 0

sinβ 0 cosβ 0
0 0 0 1

⎤

⎥
⎥
⎦ (2) 

The transformed point cloud data included points from the trees in 
different rows. Therefore, a region of interest (ROI) was set to extract the 
targeted points from an individual tree. Targeted points were segmented 
by specifying an ROI and using a Kd-tree based search algorithm 
(Vemulapalli, 2020). The ROI of − 1.5 to 1.5 m in the x-axis, − 4.5 to 
− 2.3 m in the y-axis, and − 1.8 to 1.8 m in the z-axis was selected in 
orchard site 1. The ROI of − 0.50 to 0.50 m in the x-axis, 1.5–2.5 m in the 
y-axis, and − 1.8 to 1.8 m in the z-axis were used for orchard site 2. The 
extracted points also included the ground plane at the bottom of the 
targeted tree which was removed before locating the canopies in the 
tree. A pcfitplane() function using the M-estimator SAmple Consensus 
(MSAC) algorithm was applied to fit the plane in the 3D point cloud, 
which has a maximum allowable distance from an inlier point to the 
plane. The MSAC algorithm is a variant of the RANdom SAmple 
Consensus (RANSAC) algorithm. The RANSAC is an iterative method for 
the robust fitting of mathematical models in the presence of many data 

outliers. The RANSAC was best fitted in these experiments due to the 
separable ground plane points from the tree canopy points. The ground 
plane points were then considered as outliers. The RANSAC algorithm 
shown in Fig. 6 was used to search the best trellis plane. A maximum 
distance (i.e., distance from an inlier point to the plane) of 0.15 m and 
the reference vector to the z-axis direction was utilized to the plane 
fitting for ground segmentation. The ground points were removed from 
the point cloud by eliminating the outlier points in the point cloud 
inputs. 

2.3.2. Tree canopy determination 
In this study, the tree canopy was defined as the tree foliage/leaves. 

As stated earlier, in the test orchards, there are trellis wires and poles in 
the tree rows. To calculate canopy foliage density and volume, the 
support poles and trellis wires needed to be segmented and removed. 
The tree trunk is another parameter responsible for increasing the 
number of points and was also removed. With removing the trellis wires, 
poles, and trunks, it was expected to provide a more precise canopy 
density map. To segment the trellis wires, a custom Kd-tree based 
nearest neighbor search algorithm to identify the isolated points was 
used (Vemulapalli, 2020). The isolated points selection was based on 
previous work by Zeng, Feng, & He (2020). A radius of 0.1 m was uti
lized to identify the isolated point considering the position of the trellis 
wire in the orchard row. This point was identified based on the esti
mated Euclidean distance to the trellis wire location when a point had 
less than four neighboring points. The trellis wires are typically situated 
in a plane and corresponding to one another; therefore, the isolated 
points must be within the same plane. No trellis plane was recognized 
when there were insufficient isolated points present to fit a plane, or the 
position of the fitted plane was not accurate. Similar to ground plane 
segmentation, the MSAC calculation was utilized again to fit the trellis 
wire lines in the trellis plane. The identified trellis wires points were 
then removed. 

After removing the trellis wire points, the next step was to remove 
tree trunks and support poles from the canopy points. Typically, the 
position of tree trunks and support poles are both vertical and cylin
drical. To segment the tree trunk and the support pole (Fig. 7), the 3D 
point cloud frame was partitioned into 16 2D-point sets as indicated by 
the laser ID (16 different beams) where only the y-z coordinating plane 
was used. The range of y coordinate values was defined as [Minimum Y 
− 0.2, Maximum Y + 0.2]. The value of Minimum Y and Maximum Y 
came from the trellis plane due to the trunks and support poles found 
near the trellis plane. A margin constant of 0.2 m was used to ensure 
consideration of all trunks and support poles. Upon confirming the range 

Fig. 4. Experimental setup of the LiDAR-guided system (a) utility vehicle run at the center of the row (orchard site 2) (b) consecutive five trees were scanned.  
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of the y coordinates, the dbscan() function was used to identify high- 
density clusters for determining the tree trunks and support poles. The 
point clusters of the tree trunks and support poles were located in a thin 
volume as vertically highly dense continuous points. The exposed part of 
each tree trunk was usually within 1 m above the ground; thus, the upper 
margin was set to − 0.7 in the z-axis to segment tree trunks since the 
sensor was set at 1.7 m from the ground. After determining the high- 
density cluster, the boundary() function was used to plot the candidate 
clusters. Based on the height-width ratio (HWr) and point cloud density 
of the candidate clusters, the tree trunk and support pole were deter
mined (Zeng et al., 2020). The point cloud density was calculated by 
dividing the number of points using the area of the cluster candidate. A 

density of over 3500 along with an HWr of over 1.5 and z-axis lower than 
− 0.5 m was used to segment the tree trunk in orchard site 1 where a 
density of over 2000 was used for orchard site 2. Furthermore, a density 
value of over 4000 and 5000 along with an HWr of over 3 and the z-axis 
was 2 m applied for extraction of support pole in orchard site 1 and 
orchard site 2, respectively. The density value used was higher in or
chard site 2 due to the larger diameter of the support poles compared to 
orchard site 1. Finally, the tree trunk and support pole points were 
removed to obtain the canopy foliage density points. Fig. 7 shows the 
detection of the trellis wire, pole, and tree trunk in an apple tree ac
quired point cloud. With segmenting and removal of these points, the 
remaining points represent tree canopy foliage. For GoldRush apple 

Data Collection: 
VeloView Software 

Data 
Preprocessing: 

MATLAB 
Software 

Data Processing: 
MATLAB 
Software  

Determine isolated points 
for finding trellis wire 

MSAC algorithm for trellis 
wire detection and 

segmentation 

Trunk and support pole 
segmentation 

Trellis plane detection 

Canopy points extraction 
(without trunk, trellis 
wires and support pole 

Divided tree into 4 
sub-sections according 

to the trellis wires 

Points located in each 
sub-section were 

labeled in different 
colors 

Points located in each 
sub-section were then 

counted 

Volume of each sub-
sections was measured  

Model 
Development: 

Statistical Analysis 
 

Manually leaves counting 
in each section 

Algorithm counted points 

Correlation and 
regression analysis 

Results and Map 
 

Canopy volume 
measurement 

Canopy density 
measurement 

Canopy density map 

 3D Velodyne LiDAR 

 

Read PCAP point 
cloud file 

Frame selection that  
included each tree 

Transform Each 
coordinate of point cloud 

data using a matrix  

Remove the untargeted 
points, i.e., ground plane 

Selected points from tree 
only (without ground) 

Fig. 5. Flow-chart for tree canopy density and volume measurement.  
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trees, only bottom section of the tree trunk was segmented due to the 
occlusion by leaves at the upper sections. For Fuji apple trees, the al
gorithm was able to detect and remove the visible trunk portions within 
all tree canopy sections, if they were sensed by the LiDAR sensor. Due to 
the smaller diameter of the tree trunks and resolution limitations of 
LiDAR (angular resolution of 2◦), the majority of the Fuji apple tree 
trunk points were not acquired. 

2.4. Canopy foliage point and leaf counting 

To identify canopy density, the canopy foliage points were counted 

from four sub-sections (Fig. 8). Determining the edge of the tree canopy 
is crucial to sub-divide the individual tree sections. The edge of both 
sides was detected using [Min x-axis, Max x-axis] functions. Upon 
finding the edge of an individual tree, 3D-grid coordinates were created 
defined by vector x, y, and z coordinates. The origin of the coordinates 
was located at the center of the sensor. To calculate the 3D-based canopy 
density, the grid was divided into four sub-sections according to the 
locations of three trellis wires. The heights of the sub-sections in the two 
orchards were: 1.22, 0.58, 0.58, and 1.22 m in Orchard site 1, and 1.17, 
0.68, 0.70, and 0.44 m in orchard site 2. The grid length of the sub- 
sections in the x-axis direction was identified based on the edge of 
both sides of the tree to include the selected tree canopies. For the y-axis 
direction, the maximum and minimum values from the tree which had 
the highest depth among five trees tested were used. For the z-axis di
rection, the length based on trellis wire positions was used, which were 
[− 1.60 to − 0.38 m], [− 0.39 to 0.20 m], [0.21–0.78 m], and [0.79–2.01 
m] for sections 1 to 4 respectively in orchard site 1, and [− 1.5 to − 0.33 
m], [− 0.34 to 0.34 m], [0.35–1.05 m], and [1.06–1.50 m] for orchard 
site 2. To cover the whole canopy, the ranges for the y-axis was [− 4.50 
to − 2.30 m] for the four sections in orchard site 1, and [1.5–2.5 m] for 
the orchard site 2. The range for the x-axis was [Min x-axis, Max x-axis] 
for each tree in both orchard sites. The grid length (i.e., in the x-axis 
direction) was adjusted based on the left-most and right-most of the tree 
canopy points; therefore the length of the x-axis varied from tree to tree, 
even in the same orchard site. A custom findPointsInROI function was 
used to find the indices from each sub-section followed by a MATLAB 
select function utilized for counting the number of points located in each 
sub-section separately. A total number of points was calculated and 
recorded from each sub-section from orchard site 1. A similar procedure 
was followed for orchard site 2. 

Leaves of scanned trees were counted manually with a mechanical 
counter. Counting was started from the bottom section and continued to 
the top section. The size of the counted leaves ranged from 54 to 89 mm 
in length and 32 to 65 mm in width, and smaller leaves were not counted 
(Fig. 9). The length and width were measured at the center of the leaf, 
where the maximum length and width were achieved. Only the larger 

1 Step 1: int 
2 Step 2: While iter < max_iter do
3 n random selected points of data 
4 parameters of the fitted plane to 
5  = 
6 For (every point in data and not in ) 
7                                   If  (point fits with a  < d) Then 
8                                       add point to 
9 

10                                  End If 
11                            End For
12                            If (the number of points in > k Then
13                                 (a good plane is detected) 
14                                 fitted to all points in 
15                                 largest of the fitted points 
16                                  If (  < ) Then 
17                                       (this plane is better than previous planes) 
18                                         =  
19                                        =  
20                                        =  
21                                  End If
22                            End If
23                         iter++ 
24                    End While

Where, 
int: initialization 
iter : iteration 

 random inliers 
 plane parameters 
 consensus set 

best plane 
best consensus set 

best Error 
 : distance error 

Fig. 6. RANSAC algorithm is written with MATLAB® software to search optimal plane.  

Fig. 7. Tree trunk, trellis wire and support pole detection (TP: trunk points; PP: 
support pole points; TWP: trellis wire points; CP: canopy points) from a Gold
Rush apple tree. 
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leaves were counted because the smaller leaves have very low possibility 
to be hit by the laser beam, and the large-sized leaves acquire a major 
portion of pesticides. Conversely, the smaller leaves intercept less 
quantity of chemicals than larger leaves. 

The number of points counted in each sub-section was also calcu
lated using the algorithm. The number of leaves and the number of 
points counted by the algorithm were then used to build a linear 
regression relationship. Two models were established from the two or
chard sites. A linear least square was used to fit a statistical or mathe
matical model to the data. 

2.5. Canopy density and volume measurement 

2.5.1. Canopy density measurement and map 
Upon removing all unnecessary points (e.g., tree trunk, trellis wires, 

and support pole points), the remaining points were used to calculate the 
canopy density of the trees. Each point cloud image from individual 
trees was divided into small grid areas with equal sizes of 50 cm2. The 
number of canopy points from each grid area was counted to generate 
canopy density maps. Canopy points were converted to the number of 
leaves using the linear regression model (section 2.4) before calculating 
and generating the canopy density map. Finally, the canopy foliage 
density of each area was calculated using Eq. (3). The density map was 
generated by using the algorithm provided by He (2020). 

Tree Canopy Density =
Np

TA
(3)  

where Np is the number of leaves counted by the algorithm in the grid 
and TA is the area of each sub-section in m2. 

2.5.2. Canopy volume measurement 
Canopy volume is usually measured to document the size of an in

dividual tree. An alpha shape algorithm (Fig. 11) was used to generate 
the 3D-shape of the individual trees, followed by volume measurements. 
The major advantage of the alpha shape method is that it allows for 
concave shapes, which is not possible with convex methods. The convex 
contour has a higher chance of serious overestimation due to having a 
fixed solution, which is not the case for concave contour (Fig. 10). The 
alpha shape algorithm contains several smaller regions, depending on 
the point set and parameters. The basic mechanism behind an alpha 
shape is that it starts with a Delaunay triangulation. The smaller regions 
are assigned with a unique label/ID, which numbers the canopy regions 
from the largest volume to the smallest. 

2.6. Statistical analysis 

Results of manual measurements (manually counted leaves) and 
automatically counted canopy points using the LiDAR-guided canopy 
density measurement system was compared separately for each orchard 

Fig. 8. Labeled canopy points in four sections of an apple tree (section 1 (bottom) to section 4 (top)).  

Fig. 9. Various size of apple leaves used for counting.  
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site by linear regression analysis using Minitab® 18 statistical software 
(Minitab® Inc., State College, PA, USA). The coefficient of determina
tion (R2) was also calculated for the performance evaluation of the 
system. We calculated percent error between the predicted number of 
leaves and manually counted leaves as the evaluation index for the 
automatic leaf counting. The percent error was defined by dividing the 
absolute difference of predicted leaves and manually counted leaves 
with manually counted leaves. 

3. Results and discussion 

3.1. Canopy identification in sections 

The point cloud data of five consequent trees in each orchard site 
were processed using the developed algorithms. Figs. 12 and 13 show 
the tree canopies in the two test sites with and without trellis wire, poles, 
and tree trunks. These points were marked in different colors to 

Fig. 10. Convex and concave contours of a 2d-point cloud data.  

1 Step 1: initialization 
2              a = 1 
3              b = 1 
4
5 Step 2: For (all the elements of ) 
6                     c = Circumsphere ( ) 
7 If (c < ) Then
8 If (unique( )) Then
9
10                              a = a + 1; 
11 End If
12                      End If
13                      c = Small Circumsphere( ) 
14  If (c < ) Then
15 If (Is Sphere Empty( )) Then
16
17                                b = b + 1 
18 End If
19 End If
20 End For

Where, 
Input: set of point list, 
Output: Alpha shape points 
Variables: a, b, and K are integer 
                  D and c are real     

Fig. 11. Alpha shape algorithm is written with MATLAB® software.  

Fig. 12. Point cloud data and canopy identification in sections (orchard site 1) (a) LiDAR point cloud data after ground vegetation removal from left (tree no. 1) to 
the right (tree no. 5) (b) segmented tree canopy points (without tree trunk, trellis wire, and support pole). 
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represent four sections of tree canopy divided by the trellis wires. 
Figs. 12(a) and 13(a) show the point cloud data with points removed 

for the ground and neighboring rows. The trellis wires, poles, and tree 
trunks were then also removed to represent the canopy foliage, as shown 
in Figs. 12(b) and 13(b) for the two sites. The tree trunk and support 
poles were presented vertically. Not all of the tree trunks or poles were 
shown in the images due to being missed by the LiDAR sensor (i.e., 
missed by the laser beams). A potential reason for the miss was that 
some parts of the trunk or pole were located at the gap between laser 
beams, and were not acquired due to the sensor angular resolution (e.g., 
2◦). Tree trellis wires were also not detectable in some spots because of 
the occlusion caused by tree branches and leaves. Nonetheless, all ac
quired points from the tree trunk, trellis wires, and support poles were 
successfully eliminated by the algorithm to obtain only canopy points 
for further canopy density estimation. 

3.2. Canopy density prediction model 

A canopy density model was developed to predict the number of 
leaves in each section of the tree, which provides an idea about how 
much pesticide is needed in each section. Each apple tree was divided 
into four sections according to the position of the trellis wires. The main 
reason to divide sections based on trellis wires was to differentiate one 
section from another for manual leaf counting. Tree width was adjusted 
based on the minimum and maximum values of the x-axis where the 
average tree width of 1.5 m was calculated based on apple tree width in 
orchard site 1. A smaller width of 1.00 m (i.e., average) was computed 
for orchard site 2 due to smaller sized apple trees. Depth of the sections 
was fixed to 2.2 m for orchard site 1 and 1 m for orchard site 2. Two 
separate models were generated considering the variety and age of the 

apple trees. Data gathered from five consecutive trees in each orchard 
site was used for the model development. The bottom tree section (i.e., 
section 1) had the highest numbers of leaves among the four sections 
(Fig. 14). The top tree section (i.e., section 4) had the fewest numbers of 
leaves compared to the other three sections in both of the orchard sites. 

Linear regression models were developed to predict the numbers of 
leaves from the LiDAR point cloud data (Eq. (4) & Eq. (5)). Analysis of 
LiDAR point counts vs manually counted leaves suggests a fairly high 
correlation of 0.95 (R2 = 89.3%) reported in orchard site 2 compared to 
a lower correlation of 0.82 (R2 = 67.16%) calculated for orchard site 1 
(Fig. 15 & Fig. 16). 

Fig. 13. Point cloud data and canopy identification in sections (orchard site 2) (a) LiDAR point cloud data after ground vegetation removal from left (tree no. 5) to 
the right (tree no. 1) (b) segmented tree canopy points (without tree trunk, trellis wire, and support pole). 
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Fig. 14. Number of leaves counted from five consecutive apple trees (a) orchard site 1 (b) orchard site 2.  

Fig. 15. Correlation between automatic point counts and manual leaf counts in 
orchard site 1. 
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Number of leaves in orchard site 1 = 6.00+ 0.6804

× Point counted by developed algorithm
(4)  

Number of leaves in orchard site 2 = 34.52+ 0.1391

× Point counted by developed algorithm
(5) 

In both cases, the correlation of testing apple trees was significantly 
higher. This was due to only one counter involved in manually counting 
of all the apple trees potentially reducing the error caused by inconsis
tent counting. However, the correlation of the orchard site 1 test was 
lower compared to the orchard site 2 test. One major contribution to the 
higher correlation in orchard site 2 lies in the lower leaf foliage density 
of the trees with less overlap. Manual counting may also generate some 
errors, especially for the high-density canopies. Berk et al. (2020) 
experienced similar problems for manual leaves counting resulting in 
poor correlations, as low as 0.27. Santoso, Tani, & Wang (2016) also 
reported manual counting has the potential problem of inaccurate 
measurement. Conversely, it was comparatively easier to count the 
number of leaves with the counter due to the light canopy density, which 
resulted in an accurate manual counting of leaves. Compared to previous 
studies, our study found a higher correlation due to the removal of un
necessary points from tree trunks, trellis wires, and support poles. 

3.3. Tree canopy volume and number of leaves 

Canopy volume was measured using an alpha shape algorithm by 
generating a 3D-shape of the individual trees (Fig. 17). Four different 
alpha values (e.g., 0.1, 0.3, 0.5, and 1) were applied for canopy volume 
estimation. Results showed that the lowest volume of the apple trees 
ranging from 0.1314 m3 to 0.4633 m3 was calculated using an alpha 
value of 0.1 (Table 1). Highest volumes ranging from 0.5808 m3 to 
6.2668 m3 were measured with an alpha value of 1. 

Relationships were built between canopy volume and the total 
number of manually counted leaves from the individual trees (Fig. 18). A 
total of 10 trees from both sites were used to configure the relationships. 
The highest correlation of 0.98 (R2 = 95.90%) was achieved using the 
alpha value of 1. The alpha value of 0.3 and 0.5 also resulted in a cor
relation above 0.90. Conversely, the lowest correlation of 0.83 resulted 
from an alpha value of 0.1 because the area assigned for each point was 
too small. Therefore, the corresponding canopy foliage volume was also 
small compared to the other volumes. In a citrus tree canopy density 
measurement study, Wei and Salyani (2005) achieved a good correlation 
(R2 = 0.96) between laser measurement and visual assessment. Visual 
assessing was performed by calculating the percentage of living material 
(foliage and branches) present on each tree. Another study also reported 
a high coefficient of determination (R2) of 0.98 during quantifying 

canopy volume and porosity of citrus trees using the laser sensor 
compared with manual measurements (Ehsani & Hwan, 2008). 

3.4. Canopy density map 

Tree canopy density maps were generated from the acquired points 
and the estimated number of leaves (Equations (4) and (5)). Average 
processing time of a canopy density map was 2 s. Fig. 19a represents the 
total point density from a tree without the trunk, trellis wires, and 
support pole points. A canopy density map based on the acquired points 
was created with small grids of size 0.0567 m × 0.0884 m (width ×
height of one grid) (Fig. 19b). The color bar (at the right side) shows the 
number of canopy points per m2 area. Another canopy foliage density 
map was generated based on the number of leaves where a grid size of 
0.04 m × 0.0125 m was created to visualize the map (Fig. 19c). The 
color bar used in the map provides information about the number of 
leaves per 0.005 m2 (i.e., area of one grid) area. Using the canopy 
density map, the number of leaves in each section of the tree can be 
easily calculated. The average percent error of automatically counted 
leaves was higher (24.44%) for orchard site 1 test than the orchard site 2 
(14.21%). The less error in orchard site 2 was mainly attributed to the 
lower leaf foliage density. 

Canopy foliage density is an important parameter for site-specific 

Fig. 16. Correlation between automatic point counts and manual leaf counts in 
orchard site 2. 

Fig. 17. Tree canopy volume measurement using the alpha value of 0.1.  

Table 1 
Canopy volume of apple trees by using alpha shape algorithm.  

Tree No. Alpha =
0.1volume 
(m3) 

Alpha =
0.3volume 
(m3) 

Alpha =
0.5volume 
(m3) 

Alpha = 1 
(Convex 
hull) 
volume 
(m3) 

Orchard 
site 1 

1 0.3494 2.3749 3.4569 5.2639 
2 0.3663 3.0494 4.7534 5.6843 
3 0.3331 2.5446 3.9203 5.2503 
4 0.1962 1.4559 3.1410 4.3782 
5 0.4633 3.3533 5.1322 6.2668 

Orchard 
site 2 

1 0.0776 0.2809 0.3670 0.4434 
2 0.1953 0.5806 0.7265 0.8394 
3 0.1792 0.5764 0.7305 0.8766 
4 0.2003 0.6256 0.7984 0.9048 
5 0.1314 0.4278 0.5161 0.5808  
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pest management. It can provide information about where the tree has 
high/dense canopy density or low/light canopy density. Given the in
formation about tree canopy density, adjustment of the nozzle flow rates 
is possible to guide the precision sprayer during the spraying operation. 
Dense canopies typically retain humidity which can lead to favorable 
conditions for pathogen infection and disease development (Vidal et al., 
2017). Therefore, the canopy density measurement system developed in 
this study helps locate positions where the tree may have a higher 
chance of being infected. The canopy density information would also be 

an indicator for controlling the flow rate of sprayer nozzles placed at 
different locations. 

Few studies have worked on tree canopy density measurement in the 
past years. Underwood et al. (2016) predicted the canopy density of 
almond trees and reported a coefficient of determination of 0.77. The 
Voxel method, along with all acquired points, was used for the volume 
estimation where points reflected from the tree trunk, canopies, trellis 
wires, and support poles were also accounted for. Considering all sensed 
points, Chakraborty et al. (2019) predicted apple tree canopy volume 

Fig. 18. Correlation between canopy foliage volume and manually counted leaves under different alpha values (0.1, 0.3, 0.5, and 1).  

Fig. 19. Canopy foliage density map (a) tree canopy points without the trunk, trellis wires, and support pole points divided into sections (b) density map considering 
the number of canopy points (per m2) (c) canopy density map considering the number of leaves (per grid area). 
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using a mobile 3D LiDAR system and achieved the highest correlation of 
0.81 using the Convex hull method. Our results showed the highest 
correlation compared to previous studies of 0.95 using the developed 
canopy prediction model for the Fuji apple variety in a fruiting wall 
architecture. Correlation in these experiments is higher than previous 
studies because 1) only canopy points were considered (tree trunk, 
trellis wires, and support poles removed); 2) exclusion of small leaves 
during manual counting offered a strong correlation between manual 
and automatic measurements because the small canopies may have a 
low chance of being hit by the laser sensor. 

Even though we introduced the canopy foliage prediction models for 
two different varieties (i.e., GoldRush and Fuji), our system is not 
limited to any specific apple variety. However, new models need to be 
created before using this system to other apple varieties considering age, 
shape, and size of the trees. We tested our LiDAR sensing system to or
chards with flat terrain, but this system could be used in orchards with 
uneven (i.e., rough) and/or sloping terrain. Correction of point cloud 
data that may be necessary due to uneven terrain can cause deviations of 
the angular orientation of the LiDAR sensor during scanning (Palleja 
et al., 2010). In future studies, we will conduct our experiments in the 
uneven terrain where an IMU and GPS will be integrated with the LiDAR 
sensing system for canopy foliage density measurement. 

Although a considerable number of studies evaluated the tree canopy 
characteristics (i.e., tree height, width, leaf area, etc.), the accurate site- 
specific management (i.e., variable-rate applications) in the orchards 
was a major concern until an experimental real-time laser-guided 
variable-rate sprayer was developed by Chen et al. (2012). However, 
this variable-rate sprayer did not exclude trunks, trellis wires, and 
support poles in tree canopy characterizations and sprayed them as the 
targets. The best pest management practices require more accurate and 
precise canopy information in reducing chemical application, especially 
during spraying young or sparse foliage trees. Several attempts were 
reported to measure leaf area density (i.e., area covered by leaves or leaf 
wall area) for precision spraying in the tree fruits (Berk et al., 2020; 
Hosoi & Omasa, 2006; Shen et al., 2017), but the leaf orientation angle 
can greatly affect the accuracy of these type of measurements in real- 
time field conditions. Different leaves have different angles that can 
easily affect the measurement of the leaf wall area and cause errors 
(Jejčič et al., 2011). We measured canopy density based on tree sections 
where leaf orientation angle cannot affect the performance of the 
measurement unless other leaves fully occlude the leaf. When a sub
stantial portion of a leaf is visible, there might be a higher chance of 
being hit by the laser beam, and it would then be considered as a canopy 
point. The tested trees were in high-density structures with relatively 
narrow canopy. The developed measurement system achieved fairly 
high correlation between manually and automatically counted leaves. 
While for large trees with more branch overlapping, the effectiveness of 
the system would need to be further investigated. Another major 
contribution of this study is that we calculated section-based canopy 
density which is essential to control each nozzle separately according to 
the measurements. Previous studies were only concerned about leaf area 
and volume of the whole tree, which cannot minimize spray drift 
adequately during pesticide spraying. Density information calculated 
from the number of points/leaves will be a good aid for precision 
spraying, which will be tested in future work. 

4. Conclusions 

Apple tree canopy density was assessed using a ground-based LiDAR 
guided sensing system. Point cloud data were acquired from two orchard 
sites with GoldRush and Fuji apple varieties. A processing algorithm was 
scripted in the MATLAB® programming environment. Experiments were 
conducted with T-trellis structured orchards; therefore, tree trunk, trellis 
wires, and support poles were extracted to separate only the canopy 
points from the acquired data. Apple leaves were counted manually by a 
counter, and also automatically estimated by the developed algorithm. 

Two apple tree leaves prediction models were developed for two vari
eties with different sizes and shapes. The canopy volume of individual 
apple trees was measured using an alpha shape algorithm applying 
different values (0.1, 0.3, 0.5, and 1). The relationship of the canopy 
volume and manually counted leaves was established. Results reported a 
strong correlation of 0.95 between manually counted leaves and ac
quired point cloud data from a LiDAR sensor using Fuji apple tree data 
(smaller canopy). In comparison, the correlation dropped to 0.82 using 
the GoldRush variety (larger canopy) during field evaluation. Canopy 
volume measured by using the alpha shape algorithm showed a strong 
relationship with manually counted leaves with a correlation up to 0.98 
using an alpha value of 1. Additionally, the canopy density maps can 
pinpoint high, moderate, and low density, and also no leaf regions 
within the apple trees, which should be able to guide precision man
agement systems. This study was conducted in flat terrain surfaces; in 
the future, we will conduct experiments in uneven terrain integrating an 
IMU and GPS to this LiDAR sensing system. Point cloud position will be 
corrected based on the IMU readings and a GPS for the georeferenced 
location. The canopy density information will be used for precision 
spraying operations by adjusting the nozzle flow rate based on the 
appearance of the canopy in each tree section. 
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