Development of an automatic airflow control system for precision sprayers based on tree canopy density

Project Type: Graduate Student
Funds awarded in 2020: $15,000.00
Projected End Date: 10/31/2022
Grant Recipient: The Pennsylvania State University
Region: Northeast
State: Pennsylvania
Graduate Student:
Faculty Advisor:
Long He
Pennsylvania State University
Description:
The airflow discharged from orchard airblast sprayers is a primary component for successfully carrying spray droplets to the target trees. Because of the variation in orchard tree canopies, control of the airflow to minimize off-target loss during spray application is essential. An automatic airflow control system for precision sprayers was developed to maximize spray droplet coverage on targets and minimize off-target loss while considering the tree canopy densities. The primary component of the system was an iris damper, which was designed as a retrofit attachment on the fan inlet of a threepoint airblast intelligent sprayer. A 3D light detection and ranging (LiDAR) sensor was installed at the top of the sprayer to acquire the tree canopy data. A motor was employed to control the damper opening with a micro-controller. To develop the models required for automatic airflow control, field experiments were conducted at three canopy density orchards with different cultivars (GoldRush, Gala, and Fuji). A total of 15 trees (five trees from each cultivar) were randomly selected, and five different damper openings (openings 1, 2, 3, 4, and 5) were tested for each tree. Opening 1 represented the same air inlet as a traditional precision airblast sprayer, while openings 2, 3, 4, and 5 were the sequentially reduced air inlets of the sprayer. A canopy density measurement algorithm was scripted to measure the canopy point density of individual trees. Three models were built to show relationships between (1) tree canopy point densities and airflows; (2) canopy densities and damper openings; and (3) damper opening and motor steps. The combination of the two models (2 & 3) was used to assess the amount of airflow required for a specific canopy density. Field validations for medium and high-density trees showed that the system achieved adequate spray penetration at the top, middle, bottom, back-left, and back-right positions of the tree sections and reduced off-target loss at the ground and edge of next row sections using openings 4 and 2, respectively. However, the mechanical motion of the damper required 3 s to move from minimum to maximum opening, so the average canopy density was recommended to control the airflow. The overall results suggested that the automatic airflow control system could reduce spray drift and off-target losses and improve spray application efficiency in orchards.
Type:
Peer-reviewed Journal Article
File:
Author:
Md Sultan Mahmud, The Pennsylvania State University
Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture or SARE.