• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Search Projects
  • Help
  • Log in

Sustainable Agriculture Research and Education

Grants And Education To Advance Innovations In Sustainable Agriculture
  • Grants
  • Project Reports
    • Search Projects
    • Search Project Coordinators
  • Learning Center
  • SARE In Your State
  • Events
  • Newsroom
  • About SARE

Production of Three Eastern U.S. Native Shrubs: Effects of Auxin Concentration on Rooting and Shade Level on Container Plant Growth

LNE13-324 (project overview)
Project Type: Research and Education
Funds awarded in 2013: $58,347.00
Projected End Date: 10/31/2017
Grant Recipient: University of Connecticut
Region: Northeast
State: Connecticut
Project Leader:
Dr. Jessica Lubell
Email
University of Connecticut
Description:
American fly honeysuckle (Lonicera canadensis), hobblebush (Viburnum lantanoides), and sweetbells (Eubotrys racemosa) are eastern U.S. native shrubs with ornamental value, which might become successful nursery crops if they propagate readily from stem cuttings and grow uniformly in containers. We evaluated rooting success for hobblebush and sweetbells using stem cuttings treated with indole-3- butyric acid (IBA) in talc at concentrations of 0, 1000, 3000, or 8000 ppm. For hobblebush, IBA at 1000, 3000, or 8000 ppm will yield 70% rooting success. For sweetbells, IBA treatment did not enhance rooting, and 88% rooting success can be achieved with untreated cuttings. Stem cuttings of american fly honeysuckle root at 49% (previously published). We also evaluated all three native shrubs grown in nursery trade #1 containers under shade levels of 0%, 40%, or 70%. American fly honeysuckle grown under 40% or 70% shade were larger, had a greener hue angle, and higher chlorophyll fluorescence (Fv/Fm) than plants grown in full sun. Throughout the study period, Fv/Fm values for full-sun american fly honeysuckle were 0.6 or below, indicating plants were stressed. Hobblebush in 40% and 70% shade were wider, had more leaves, and enhanced foliage color compared with full- sun plants. Hobblebush in 70% had the highest Fv/Fm values at 0.78 or higher across the study period. For sweetbells, plant width increased as shade level increased. Even though sweetbells in 70% shade were wider and larger, they lacked density and had a less appealing habit than 40% shade and full-sun plants. Of the three study species, sweetbells might be the easiest plant for growers to incorporate into production because it propagates readily from stem cuttings and can be grown in full sun to 40% shade. Hobblebush and american fly honeysuckle may present more challenges for growers because hobblebush requires considerable shade to grow and american fly honeysuckle is more difficult to propagate.
Type:
Peer-reviewed Journal Article
File:
Download file (PDF)
Authors:
Jessica Lubell-Brand, University of Connecticut
Jacob Griffith Gardner, University of Connecticut
Target audiences:
Farmers/Ranchers; Educators; Researchers; Consumers
Ordering info:
Jessica Lubell
jessica.lubell@uconn.edu
Cost: $0.00
This product is associated with the project "Developing adaptable native shrubs for the green industry"
Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture or SARE.

Primary Sidebar

Footer

SARE - Sustainable Agriculture Research and Education USDA
1122 Patapsco Building | University of Maryland | College Park, MD 20742-6715

This site is maintained by SARE Outreach for the SARE program and features research projects supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture. SARE Outreach operates under cooperative agreement award No. 2018-38640-28731 with the University of Maryland to develop and disseminate information about sustainable agriculture. USDA is an equal opportunity provider and employer.

Sustainable Agriculture Research & Education © 2019
Help | Contact us