Examining the environmental, social, and economics of utilizing livestock and summer cover crops in annual cropping systems

Final report for FW23-423

Project Type: Farmer/Rancher
Funds awarded in 2023: $24,753.00
Projected End Date: 03/31/2025
Host Institution Award ID: G284-23-W9982
Grant Recipient: Kingsley Farms
Region: Western
State: California
Principal Investigator:
Ted Kingsley
Kingsley Farms
Expand All

Project Information

Summary:

The biggest challenge that annual cropland farmers face in California is how to keep their soil healthy and productive at the end of the annual crop cycle.  

What are the opportunities and challenges of incorporating summer cover crops and livestock on conventional annual farming systems?

We will be studying the various impacts of three different treatments utilizing summer cover crops.  This will promote healthy soils, livestock, and our environment.  In the areas promoted we also hope to have a positive social impact by reducing our carbon footprint by regenerating soils.  We hope by showing we can keep our soil productive in the "off season" that more growers will implement summer cover crops to promote healthy soils and increase economic value by either grazing or baling.  We will share the outcomes of our project with on site fields days, newsletters, and local grower meetings.

Project Objectives:

The objectives of this project are to:

    • Quantify the economics of three termination strategies for a summer cover crop including grazing, baling, and discing to incorporate residue into the field (control treatment).
    • Quantify changes in soil health for three termination strategies for a summer cover crop including grazing, baling, and discing to incorporate residue into the field (control treatment).

 

Education and outreach objectives are to:

    • Demonstrate opportunities to profitability incorporate livestock into annual rotations.
    • Reduce barriers to summer cover cropping and livestock incorporation by increasing knowledge and awareness of how to manage these practices.
    • Increase communication between farmers and ranchers in the region to further opportunities for grazing on annual cropland.
    • These objectives will be accomplished through:
      1. Outreach events: a field day will be organized at the farm to discuss the project. This field day will help meet all three objectives outlined above by 1) visually demonstrating how to manage livestock on cropland and providing information about the economics of each treatment; 2) Ted and Ben will present on their experiences and observations with the project including the logistics of managing animals in a rotation; unexpected challenges and opportunities; considerations for scaling up the practice; 3) these events will be advertised widely through UC Cooperative Extension and partner collaborator networks in order to ensure good attendance. At these events time will be dedicated to discussion on the challenges and opportunities for both farmers and ranchers of livestock integration.  Sarah Light led a farmer-rancher discussion on livestock integration in annual systems in 2021 and this project will build upon that outreach work.   
      2. Written communication. Findings from this project will be written up and shared via UC Cooperative Extension newsletters and blogs.  In addition, a story about the project will be submitted for consideration to other relevant publications in the state to increase the reach of this work.  Sarah Light will post a project summary on her UC Cooperative Extension webpage within one year of project completion. Educational and outreach objectives 1 and 2 will be met by this written communication.
  • Presentations: Technical Advisors Sarah Light and Josh Davy frequently give presentation to grower audiences and will incorporate information about this project into relevant talks about soil health or grazing. These presentations will help meet objectives 1 and 2.

 

 

Timeline:
  • April - May 2024
    • Project Initiation - Soil Sample and Analysis , PI (Ted Kingsley), TA (Sarah Light)
  • June 2024
    • Before Cash Crop planting - Soil Sample and Analysis , PI (Ted Kingsley), TA (Sarah Light)
  • July 2024
    • Plant and Irrigate cover crops PI (Ted Kingsley), Ben Carter
  • September - December 2024
    • Rotate animals through planted cover crops , PI (Ted Kingsley), TA (Josh Davy) (Treatment 1)
    • Weigh livestock periodically for average daily weight gain, PI (Ted Kingsley), TA (Josh Davy)
    • Cut, swath, and bale summer crop , PI (Ted Kingsley), Ben Carter (Treatment 2)
    • Chop summer cover crop , PI (Ted Kingsley), Ben Carter (Treatment 3)
    • Cut and sample cover crop for dry matter and nutrition analysis , PI (Ted Kingsley) , TA (Sarah Light and Josh Davy)
  • May 2025
    • Soil Sample and Analysis , PI (Ted Kingsley), TA (Sarah Light)
    • Conduct field days and presentations from project and report results, PI (Ted Kingsley) , TA (Sarah Light and Josh Davy)

Cooperators

Click linked name(s) to expand/collapse or show everyone's info
  • Ben Carter - Producer
  • Josh Davy - Technical Advisor
  • Sarah Light - Technical Advisor

Research

Materials and methods:

The California Central Valley has a long growing season, allowing for the opportunity to maximize crop diversity, soil coverage, and a living root, through incorporation of cover crops into the rotation. A standard management practice with summer cover crops is to disc and incorporate the cover crop.  This treatment is the control treatment.  The objectives of this project are to:

    1. Quantify the economics of three termination strategies for a summer cover crop including grazing, baling, and discing to incorporate residue into the field (control treatment).
    2. Quantify changes in soil health for three termination strategies for a summer cover crop including grazing, baling, and discing to incorporate residue into the field (control treatment).

 

Following summer cash crop harvest, a summer cover crop was planted. This project evaluates three methods of terminating a summer cover crop: grazing, baling, or discing and incorporation.  All treatments were replicated three times. If there is no reduction in soil health, while providing an economic benefit, producers may be more likely to consider incorporating a summer cover crop into their rotations.  Water is extremely limited in California and a summer cover crop requires irrigation for establishment and productivity. Understanding these tradeoffs is critical for farms in California.  After summer cover crop termination, a winter cover crop was planted in the fall, followed by a summer cash crop in the spring.

Objective one will be met by weighing animals before and after they graze each grazing treatment plot or by observing body condition of the livestock. The economics of baling treatments has been quantified based on the yield per acre and will be translated into a dollar amount based on the price of hay during the project year.  The discing and incorporation treatment is assumed to have no economic return. Costs associated with each treatment will also be quantified to generate a budget/balance per treatment.

Objective two will be met through soil sampling at three points during the project year: prior to project in initiation, prior to spring cash crop planting, and one year after project initiation. All soil samples will be collected in the top foot of the soil profile by walking the plot in a W pattern to get one composite sample per plot. Baseline soil samples and soil samples one year after project initiation will be analyzed for total carbon, total nitrogen, organic matter, as well as other soil fertility measurements that are relevant to producers (pH, soil fertility, EC). Soil samples collected in the spring prior to cash crop planting will be analyzed for plant available nitrogen (nitrate) and soil biology assessments (Haney test).  The goal of these mid-project samples is to assess any differences in soil that would be relevant to a farmer going into the cash crop season including nitrogen tie up. Bulk density samples will be collected at project initiation and one year after project initiation to quantify any changes in total carbon or total nitrogen. Soil compaction measurements will be taken once during the cash crop growing season when crop roots are actively growing. In addition, cover crop biomass will be collected from the control plots prior to cover crop incorporation.  Three meter square quadrants of biomass will be collected and analyzed for total nitrogen and total carbon to measure how much carbon and nitrogen is being added back to the soil on a per acre basis.

 

 

 

Research results and discussion:

 Our soil analysis did not show a statistical difference in terms of soil carbon or nutrients.  

We did learn that depending on the year a producer will have to decide if baling or grazing is better utilized for the return to the farm.  Baling will be better economics for the farm when forage prices are high.  When cattle prices are high adding pounds to the calves will result in higher returns to the producer.  We have analyzed some of the economics which we have listed below.

Research Analysis 1

Economics of Growing Summer Cover 

Based on our observations and experience the tradeoff from grazing cattle vs baling forage ultimately comes down to price of forage during any given year.  We were not economically viable when we brought custom grazed cattle onto the project because of the lack of available forage.  Because the ranch farms cash crops on most of the acreage the available land is not enough to sustain the cattle for a long enough period to gain enough weight to pay for the cost of planting and growing the summer cover crop.  Benden Farms does own approximately 75 head of cattle and we found that during the second year utilizing Benden's cows the feed had more value internally.  If a farmer or rancher was only in the livestock business growing summer cover crops would be a good source of additional forage during times of historically short feed (ie late fall, early winter).

  Lbs/Gain/Day Days $/lb Gain Total Head  
  1.35 75 0.45 70  
In Weight Out Weight Total Gain Total $/Head Total $/TL  
700 801.25 101.25 45.5625 3189.375  
           
           
           
Crop year 2024     52 Total Acres
Field 114 $/hour hours total $/acre  
Land Prep 102 62 6324 121.61538  
Land Prep OT 112 11.5 1288 24.769231  
Planting Cover 102 12.5 1275 24.519231  
Planting Cover OT 112 2.5 280 5.3846154  
Irrigate 26.5 83 2199.5 42.298077  
Irrigate OT 32.5 50 1625 31.25  
Fencing 26.5 34.5 914.25 17.581731  
      13905.75 267.41827 Per Acre Expense
Crop Year 2023     62.5 Total Acres
Field 306 $/hour hours total $/acre  
Land Prep 102 3 306 4.896  
Planting 102 18 1836 29.376  
Irrigate 26.5 184.5 4889.25 78.228  
Fencing 26.5 92 2438 39.008  
      9469.25 151.508 Per Acre Expense
           
           
lbs per bale 100        
bales per acre 25        
           
Total Forage 2500        
Tons of Forage 1.25        
           
Hay Price $/ton/acre Cost/acre for Haying 115    
50 62.5        
75 93.75        
100 125        
125 156.25        
150 187.5        
175 218.75        
200 250        
225 281.25        
250 312.5        

 

Research Analysis 2

Fall 2023 Soil Analysis

Plot  Treatment Block  OM pweak pstrong k Mg Ca Na pH CEC Nitrate Sulfur Zinc Mn Fe Cu B Solublesalt totalc totaln shs co2c
1 g 1 2 12 75 133 740 2632 136 8 20.3 9 11 0.4 7 18 2.1 1.1 0.4 0.97 1193 11.8 69
2 b 1 2.2 10 68 132 732 2357 137 7.9 18.8 12 14 0.4 8 17 2.1 1.1 0.3 0.97 1186 13.3 86
3 c 1 1.6 8 61 120 701 2374 131 7.9 18.6 12 11 0.5 7 15 1.9 0.9 0.3 0.89 1191 12.1 82
4 c 2 2.1 10 63 131 691 2509 124 8 19.2 11 11 0.4 7 18 2.1 1 0.3 0.95 1229 12.9 86
5 b 2 2.1 7 53 126 721 2501 137 8 19.4 10 10 0.4 7 19 2.1 1 0.3 0.94 1205 12.8 86
6 g 2 2.1 12 57 148 748 2623 153 7.9 20.4 8 10 0.4 7 25 2.4 1.1 0.3 1.1 1312 12.7 74
7 b 3 2.2 26 79 190 801 2796 155 8 21.8 10 12 0.6 8 34 2.9 1.4 0.4 1.33 1504 14.2 86
8 g 3 2.5 26 93 186 751 2658 156 8 20.7 9 11 0.5 7 23 2.5 1.3 0.4 1.29 1591 14.4 93
9 c 3 2.6 31 88 198 740 2581 156 8 20.3 10 12 0.6 7 23 2.5 1.4 0.3 1.22 1559 13.7 86
                                               
Total N           Pweak         Na         Mn         Soluable Salt  
Response: totaln         Response: pweak       Response: Na       Response: Mn       Response: Solublesalt
          Df Sum Sq Mean Sq  F value    Pr(>F)               Df Sum Sq Mean Sq F value  Pr(>F)              Df Sum Sq Mean Sq F value  Pr(>F)             Df  Sum Sq Mean Sq F value Pr(>F)           Df    Sum Sq   Mean Sq F value Pr(>F)
Treatment  2   6794    3397   3.9855 0.1116490     Treatment  2   9.56    4.78   0.688 0.55361    Treatment  2 192.89   96.44  1.5404 0.31913   Treatment  2 0.88889 0.44444       4 0.1111 Treatment  2 0.0066667 0.0033333       2   0.25
Block      2 225611  112805 132.3488 0.0002216 *** Block      2 636.22  318.11  45.808 0.00175 ** Block      2 764.22  382.11  6.1029 0.06092 . Block      2 0.22222 0.11111       1 0.4444 Block      2 0.0066667 0.0033333       2   0.25
Residuals  4   3409     852                Residuals  4  27.78    6.94                            Residuals  4 250.44   62.61                         Residuals  4 0.44444 0.11111          Residuals  4 0.0066667 0.0016667     
                                               
Total C           Pstrong         CEC         Fe         Soil Health Score  
Response: totalc         Response: pstrong       Response: CEC       Response: Fe       Response: shs  
          Df   Sum Sq  Mean Sq F value   Pr(>F)              Df  Sum Sq Mean Sq F value  Pr(>F)             Df Sum Sq Mean Sq F value  Pr(>F)             Df  Sum Sq Mean Sq F value Pr(>F)           Df Sum Sq Mean Sq F value  Pr(>F)  
Treatment  2 0.015200 0.007600  2.6824 0.182445    Treatment  2  104.22   52.11  1.4364 0.33872   Treatment  2 1.8289 0.91444  1.8941 0.26378   Treatment  2  34.667  17.333  0.8739 0.4843 Treatment  2 0.5067 0.25333  0.9806 0.45024  
Block      2 0.196467 0.098233 34.6706 0.002975 ** Block      2 1296.22  648.11 17.8652 0.01014 * Block      2 4.6822 2.34111  4.8493 0.08527 . Block      2 152.000  76.000  3.8319 0.1176 Block      2 4.7400 2.37000  9.1742 0.03204 *
Residuals  4 0.011333 0.002833            Residuals  4  145.11   36.28          Residuals  4 1.9311 0.48278           Residuals  4  79.333  19.833          Residuals  4 1.0333 0.25833       
                                               
Nitrate           K         Sulfur         Cu         CO2C    
Response: Nitrate           Df Sum Sq Mean Sq F value   Pr(>F)                Response: Cu            
          Df Sum Sq Mean Sq F value  Pr(>F)     Treatment  2   76.2    38.1   0.413 0.686980    Response: Sulfur                 Df  Sum Sq  Mean Sq F value Pr(>F)   Response: co2c  
Treatment  2 9.5556  4.7778   10.75 0.02461 *   Block      2 7186.9  3593.4  38.942 0.002386 **           Df Sum Sq Mean Sq F value Pr(>F) Treatment  2 0.06889 0.034444  1.1071 0.4143             Df  Sum Sq Mean Sq F value Pr(>F)
Block      2 3.5556  1.7778    4.00 0.11111     Residuals  4  369.1    92.3                     Treatment  2 2.6667  1.3333  1.1429  0.405 Block      2 0.57556 0.287778  9.2500 0.0316 * Treatment  2  91.556  45.778  0.9385 0.4632
Residuals  4 1.7778  0.4444           ---         Block      2 4.6667  2.3333  2.0000  0.250 Residuals  4 0.12444 0.031111          Block      2 136.222  68.111  1.3964 0.3468
                      Residuals  4 4.6667  1.1667                   Residuals  4 195.111  48.778    
However, Tukey HSD shows this:      Mg                                  
treatments Tukey HSD Tukey HSD Tukey HSD A= grazed    Response: Mg       Zinc         Boron               
pair Q statistic p-value inferfence B=Control              Df Sum Sq Mean Sq F value Pr(>F) Response: Zinc                 Df   Sum Sq  Mean Sq F value  Pr(>F)        
A vs B 4.2866 0.0521 insignificant C=Baled   Treatment  2 2950.9 1475.44  3.6035 0.1274           Df   Sum Sq   Mean Sq F value  Pr(>F)   Treatment  2 0.008889 0.004444  0.5714 0.60494        
A vs C 3.6742 0.0898 insignificant     Block      2 3528.2 1764.11  4.3085 0.1005 Treatment  2 0.006667 0.0033333       2 0.25000   Block      2 0.222222 0.111111 14.2857 0.01508 *      
B vs C 0.6124 0.9 insignificant     Residuals  4 1637.8  409.44          Block      2 0.046667 0.0233333      14 0.01563 * Residuals  4 0.031111 0.007778              
                      Residuals  4 0.006667 0.0016667                                  
OM:            Calcium         ---                        
Response: OM         Response: Ca                                
          Df  Sum Sq  Mean Sq F value Pr(>F)             Df Sum Sq Mean Sq F value Pr(>F)                          
Treatment  2 0.01556 0.007778  0.1207 0.8894   Treatment  2  33865   16932  1.4511 0.3359                          
Block      2 0.38889 0.194444  3.0172 0.1589   Block      2  76232   38116  3.2665 0.1442                          
Residuals  4 0.25778 0.064444                          Residuals  4  46675   11669                                   
                                               
                                               
                                               
                                               
                                               

 

Spring 2023 Soil Analysis

                                                                                                           
Treatment   OM Nitrate Total C Total N CO2C Soil Health Calculation P1 Weak Bray P2 Strong Bray Potassium Magnesium Calcium Sodium pH CEC K Mg Ca H Na Sulfur Zinc Manganese Iron Copper Boron SolubleSalts
% ppm % ppm     ppm ppm ppm ppm ppm ppm   meq/100g % % % % % ppm  ppm ppm ppm ppm ppm mmhos/cm
Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE
Control   1.77 (0.09) 2.67 (0.33) 1.11 (0.11) 1033.67 (43.91) 170 (2.00) 23.37 (0.30) 20.67 (1.76) 80.33 (2.40) 143.67 (6.36) 528.00 (39.51) 1590.00 (93.36) 34.33 (2.03) 6.90 (0.00) 12.83 (0.81) 34.23 (0.10) 6.90 (0.00) 61.70 (0.44) 0 (0.00) 1.17 (0.07) 8.67 (0.33) 3.00 (0.12) 13.00 (1.00) 34.00 (2.00) 3.27 (0.24) 0.47 (0.03) 0.23 (0.03)
Grazed   1.63 (0.03) 2.00 (0.00) 1.03 (0.22) 902.67 (54.68) 150 (2.00) 20.87 (0.32) 17.67 (1.33) 71.33 (5.70) 143.67 (6.36) 542.67 (19.47) 1586.67 (38.32) 34.33 (1.76) 6.93 (0.03) 12.97 (0.38) 34.87 (0.03) 6.93 (0.03) 61.13 (0.28) 0 (0.00) 1.13 (0.03) 8.67 (0.33) 3.03 (0.07) 12.67 (0.33) 35.00 (2.08) 3.53 (0.22) 0.47 (0.03) 0.20 (0.00)
Baled   1.83 (0.09) 2.00 (0.00) 0.88 (0.09) 931.67 (88.20) 165 (16.80) 22.60 (1.64) 18.67 (1.45) 74.33 (1.86) 139.33 (3.93) 567.33 (24.59) 1646.00 (49.11) 35.67 (0.88) 6.87 (0.03) 13.47 (0.47) 35.10 (0.03) 6.87 (0.03) 61.13 (0.43) 0 (0.00) 1.13 (0.03) 7.67 (0.67) 2.80 (0.06) 12.33 (0.67) 35.00 (1.53) 3.47 (0.15) 0.47 (0.03) 0.20 (0.00)
  Significance                                                                                                      
  Treatment 0.1736   0.1111   0.5947   0.5067   0.4607   0.2904   0.4444   0.3705   0.7363   0.27387   0.55042   0.7859   0.25   0.43085   0.08779 .   0.1948   0.4778   -   0.8711   0.25   0.2891   0.44444   0.390625   0.16184   0.442   0.4444  
  Block 0.1975   0.4444   0.4754   0.8486   0.6215   0.4467   0.4444   0.6147   0.1544   0.02905 *   0.06431 .   0.3349   0.25   0.04359 *   0.52893   0.1182   0.2727   -   0.6049   0.25   0.7695   0.02041 *   0.002713 ** 0.01047 *   <2e-16 *** 0.4444  

 

Soil Sample Results 2024

            NEUTRAL AMMONIUM ACETATE (EXCHANGEABLE)     PERCENT BASE SATURATION (COMPUTED)                                    
Plot Sampling Depth Bulk Density (g/cm(^3) N (Total) C (Total)  OM (LOI) P (WEAK  BRAY) P (STRONG BRAY) K Mg Ca Na pH CEC K Mg Ca H Na                                    
      ppm % % ppm ppm ppm ppm ppm ppm   meq/100g % % % % %                                    
1 0-12" 1.445 858 0.56 0.9 41 122 109 247 1645   6.8 10.6 2.6 19.4 78 0                                      
2 0-12" 1.42 513 0.38 0.4 39 108 95 198 1651 151 6.9 10.8 2.3 15.3 76.3 0 6.1                                    
3 0-12" 1.305 555 0.48 0.8 43 116 111 225 1746 190 7 11.7 2.4 16 74.5 0 7.1                                    
4 0-12" 1.34 822 0.65 1.7 45 109 138 312 1792   6.8 11.9 3 21.8 75.2 0                                      
5 0-12" 1.335 946 0.67 1.3 49 114 151 329 1822 145 6.8 12.9 3 21.3 70.8 0 4.9                                    
6 0-12" 1.345 782 0.74 1.6 68 114 150 326 1818 167 6.6 13.7 2.8 19.8 66.4 5.7 5.3                                    
7 0-12" 1.29 872 0.77 1.2 59 125 159 369 1963 190 6.5 15.2 2.7 20.2 64.6 7.1 5.4                                    
8 0-12" 1.36 751 0.76 1.5 45 109 152 397 2134 204 6.8 15.3 2.5 21.6 70.1 0 5.8                                    
9 0-12" 1.395 786 0.72 1.2 40 125 128 377 2134 200 6.8 15 2.2 20.9 71.1 0 5.8                                    
                                                                         
    Note: BD collected 10/10/24                                                                  
                                                                         
            NEUTRAL AMMONIUM ACETATE (EXCHANGEABLE)     PERCENT BASE SATURATION (COMPUTED)                                    
Plot Block Treatment N (Total) C (Total)  OM (LOI) P (WEAK  BRAY) P (STRONG BRAY) K Mg Ca Na pH CEC K Mg Ca H Na                                    
      lb/A lb/A lb/A lb/A lb/A lb/A lb/A lb/A lb/A   meq/100g lb/A lb/A lb/A lb/A lb/A                                    
1 1 Bale 3371.491126 22005.0703 35365.2915 161.1085503 479.3961741 428.312975 970.580779 6463.9894   6.8 10.6 102166.398 762318.506 3064991.93 0                                      
2 1 Graze 1980.945811 14673.6727 15445.9712 150.5982195 417.0412233 366.841817 764.575576 6375.32463 583.085414 6.9 10.8 88814.3346 590808.4 2946319.01 0 235551.061                                    
3 1 Mow 1969.565284 17034.0781 28390.1302 152.59695 411.6568883 393.913057 798.472413 6196.14592 674.265593 7 11.7 85170.3907 567802.605 2643830.88 0 251962.406                                    
4 2 Mow 2995.3219 23685.6355 61947.0466 163.9774763 397.189887 502.864261 1136.9105 6529.9475   6.8 11.9 109318.318 794379.774 2740245.83 0                                      
5 2 Bale 3434.308368 24323.3257 47194.5125 177.8870085 413.8595708 548.182414 1194.3842 6614.49244 526.400331 6.8 12.9 108910.413 773263.935 2570285.76 0 177887.008                                    
6 2 Graze 2860.196846 27065.8014 58520.6516 248.7127692 416.9596425 548.631109 1192.35828 6649.40904 610.809301 6.6 13.7 102411.14 724193.063 2428607.04 208479.821 193849.658                                    
7 3 Bale 3058.954951 27011.4141 42095.7103 206.9705758 438.4969827 557.768162 1294.44309 6886.15662 666.515414 6.5 15.2 94715.3483 708611.124 2266152.41 249066.286 189430.697                                    
8 3 Mow 2777.446687 28107.3167 55474.9671 166.4249013 403.1180943 562.146333 1468.23746 7892.23865 754.459553 6.8 15.3 92458.2785 798839.526 2592530.13 0 214503.206                                    
9 3 Graze 2981.697901 27313.2632 45522.1054 151.7403512 474.1885975 485.569124 1430.15281 8095.34774 758.701756 6.8 15 83457.1932 792843.335 2697184.74 0 220023.509                                    
                                                                         
    Note: N (lb/acre) =  (g soil/cm^3)*(g N/100 g soil)*depth (cm)*(10000cm^2/m^2)*(4046.86m^2/acre)*(0.00220462lb/g)                                                      
    Note: PPM to (lbs/acre) =  ((g soil/cm^3)*(g N/100 g soil)*depth(cm)*(10000cm^2/m^2)*(4046.86m^2/acre)*(0.00220462lb/g))/10000                                                    
    1% = 10000 ppm                                                                    
                                                                         
                      NEUTRAL AMMONIUM ACETATE (EXCHANGEABLE)         PERCENT BASE SATURATION (COMPUTED)
    Depth  Treatment   N (Total) C (Total) OM (LOI) P (WEAK  BRAY) P (STRONG BRAY) K Mg Ca Na pH CEC K Mg Ca H Na
      lb/A lb/A lb/A lb/A lb/A lb/A lb/A lb/A lb/A lb/A meq/100g lb/A lb/A meq/100g lb/A lb/A
    0-12"     Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE
      Bale   3288 (116.07) 24447 (1446.52) 41552 (3425.61) 182 (13.40) 444 (19.11) 511 (41.65) 1153 (95.74) 6655 (123.53) 575 (70.06) 6.7 (0.10) 12.9 (1.33) 101931 (4099.46) 748064 (19978.14) 2633810 (232782.19) 83022 (83022.10) 195634 (5771.84)
      Graze   2608 (315.29) 23018 (4172.56) 39830 (12756.18) 184 (32.52) 436 (19.06) 467 (53.29) 1129 (194.73) 7040 (533.56) 651 (54.51) 6.77 (0.09) 13.2 (1.24) 91561 (5641.24) 702615 (59312.00) 2690704 (149485.70) 69493 (69493.27) 216475 (12168.22)
      Mow   2581 (312.01) 22942 (3218.10) 48604 (10278.19) 161 (4.26) 404 (4.20) 486 (49.27) 1135 (193.35) 6873 (518.76) 692 (40.10) 6.87 (0.07) 13 (1.17) 95649 (7151.13) 720341 (76279.88) 2658869 (43299.69) 0 0.00 223140 (18729.60)
        Significance                                                              
        Treatment 0.1342   0.76948   0.47792   0.6983   0.2698   0.329224   0.956191   0.55748   0.144   0.365   0.904469   0.1392   0.8028   0.9604   0.6901   0.05259 .  
        Block 0.1955   0.02954 *   0.02987 *   0.4185   0.42   0.009089 **   0.006954 **   0.03731 *   0.076 .   0.2336   0.006419 **   0.02649 *   0.2157   0.2586   0.6901   0.08606 .  
                                                                         
        Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1                                                          
                                                                         
            Block effect:  C (Total) OM (LOI) K Mg Ca CEC                                    
              Block # Signif letter Block # Signif letter Block # Signif letter Block # Signif letter Block # Signif letter Block # Signif letter                                    
        Note: Block 1 = Rep 1 3 a 2 a 3 a 3 a 3 a 3 a                                    
          Block 2 = Rep 2 2 ab 3 ab 2 a 2 a 2 ab 2 b                                    
          Block 3 = Rep 3 1 b 1 b 1 b 1 b 1 b 1 b                                    
                                                                         
                                                                         
                                                                         
                                                                         
                                                                         
                                                                         
                                                                         
                                                                         

 

What I can say about the soil samples from this year 2024 is this:

Baseline soil samples indicate that the field was blocked appropriately.  There are significant differences in certain soil measurements due to an alkalai heavy part of the field in one of the blocks.  This experimental design will enable us to quantify any treatment effects for future soil samples because the inherent variability of the field will be captured in the block effect.

 

What I can say about soil samples from last year is: 

We did not collect winter and spring samples from this field due to the prussic acid and need to replicate the trial in year three.

 

What I can say about soil samples from year one (2023) is:

We did not observe significant treatment effects on any of the three soil sampling dates in year one of this project.  Changes to soil health metrics often take multiple years to be measured. None of the treatments had a negative effect on soil health.

 

 

 

 

 

Participation Summary
2 Producers participating in research

Research Outcomes

Recommendations for sustainable agricultural production and future research:

Lessons learned.

Here we will include several lessons learned from our project last year (2023-2024)

  1.  We chose sudan grass as a main ingredient in our summer cover crop for several reasons.  Those reasons include fast growing species, substantial biomass production, low cost of seed, and high feed quality.  However in our project environment the sudan is not an acceptable variety because of prussic acid produced by the plant during senescence.  Moving forward we will consider other species such as grass or perhaps small cereal grains to replace the sudan.
  2. We are integrating the summer cover crop during the time of year row crops are being harvested, managing labor and resources are a logistical challenge.  

 

Lessons Learned 2024-2025

  1. Field lessons - We have learned and shared valuable information about establishing and utilizing summer cover crops in California.  First is that the timing and season of planting summer cover crops are crucial.  This last year we were not able to get a good germination of our cover crop and had to compete with various weeds minimizing our ability to graze and bale the crop.  Second is that depending on the seed mix, seasonal challenges are present when other field crops are being grown, irrigated, and harvested.
  2. Market Economy - When we started our project California was in the midst of a tenous drought.  Cattle prices were low and forage prices were high making the baling of the forage lucrative for the farm financially.  Currently in 2024-2025 cattle prices are high and we have received enough rain to graze cattle in the foothills, causing hay/forage prices to come back to normal levels.  Thus making this year a good year to utilize the forage for grazing and adding pounds to our animals.
  3. Year to year - Through our project we have learned that every year is different and can not be repeated easily.  Producers must weigh planting and/or grazing decisions based on individual years
1 Grant received that built upon this project
3 New working collaborations

Education and Outreach

3 Consultations
1 Curricula, factsheets or educational tools
1 Journal articles
1 On-farm demonstrations
1 Published press articles, newsletters
1 Tours
2 Webinars / talks / presentations
1 Workshop field days

Participation Summary:

7 Farmers participated
12 Ag professionals participated
Education and outreach methods and analyses:

We requested an extension on our project because the sudangrass in our summer cover crop mix produced prussic acid, which is toxic to livestock. We got the extension and plan to execute the project again this coming summer.  We met with the project team and decided to wait to have a field day until we have results to share. 

We are working on a mid-project summary to share as a newsletter article this spring.

We held a field day on September 30, 2024. Particpants were as follows

5 - Growers/Producers

7 - Government Agency people

2- Ranchers

2-Others

field day agenda for 9.30.24 April2024

Bullet point summary of survey results:

  • 94% of attendees rated the meeting good or excellent
  • 100% of attendees gained useful information from the meeting
  • 88% of attendees intend to use what they learned in the next 12 months.

 

Education and outreach results:

Farmers and ranchers can be hard to get out on the ground on any given day as they are usually either working, hunting, or on vacation.  The best way to get producer attendance is to call local producers who you have a personal relationship with and invite them.  Working with extension service was also a great asset as they have more colleagues engaged in the research environment.

 

 

10 Farmers intend/plan to change their practice(s)
10 Farmers changed or adopted a practice

Education and Outreach Outcomes

Recommendations for education and outreach:

We held our field day on September 30, 2024 and had good participation.  Most attendees would like to hear more about grazing challenges, seed mix, and multispecies grazing.  Some participants would have liked to spend more time looking at the individual treatments.  Overall they rated the field day as a success.

 

 

10 Producers reported gaining knowledge, attitude, skills and/or awareness as a result of the project
Key changes:
  • Multi Species Grazing

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and should not be construed to represent any official USDA or U.S. Government determination or policy.