Final Report for LNE03-175
Project Information
This project was initiated by the Cornell Soil Health Work Team (consisting of vegetable growers, cooperative extension staff and multidisciplinary faculty) in order to address the progressive deterioration of vegetable soils and to develop appropriate management solutions. During the project, the soil health status of over 100 fields on over 50 vegetable farms throughout the production areas in New York was determined. Project impact on the awareness and knowledge of soil health issues and production practices of approximately 250 growers was monitored through mailed surveys, interviews and participatory activities. Demonstration trials on various soil management practices were conducted in five commercial production regions on over ten farms and also on six established long-term soil health research sites across New York State. The established research and demonstration trials (included comparisons of different crop rotations, cover crops, soil amendments, tillage systems, pest control, transition to organic production both singly and in combination) were intensively monitored for biological, chemical and physical soil quality indicators.
From the initial 40 potential indicators evaluated across 1000 soil samples, a sub-set of ten indicators were selected and included in a soil health (Tier I) assessment protocol. The raw data was synthesized into a grower-friendly auto-generated report (similar to a nutrient analysis report) that includes ratings for individual indicators as well as a total soil health rating for the field. Whenever an indicator scores below the acceptable range, the report highlights the specific constraint(s) that may be limiting field productivity and sustainability. Suggested soil management options for addressing specific soil health constraints are also provided. The developed soil health protocol will be offered as a fee-for-service in 2007 as part of a pilot project with the anticipation of passing on the protocol to established soil analysis laboratories.
To increase the soil health literacy among growers, county educators and other agricultural service providers in New York State, numerous field days, workshops, presentations, and on-farm visits with growers were held/made in collaboration with Cornell Cooperative Extension educators. A Cornell Soil Health website (http://www.hort.cornell.edu/soilhealth/) was developed as an important resource on soil health and soil health related issues including information on the research and outreach efforts of this project. The educational outreach efforts of the Cornell Soil Health Team activities have been very successful. Based on results of the 2006 soil health survey, of those who had attended either one or more of the annual meetings, workshops or field days held during the past three years, 93% indicated that attending had improved their knowledge and understanding of soil health. Seventy-one percent indicated they had made changes in their use of cover crops, crop rotation and/or organic amendments on the farm. The increased use of both winter and summer crops was most frequently indicated followed by the increased use of slurry or manure applications. Among these growers, 42% indicated they had also reduced the frequency and/or intensity of tillage over the past three years.
Introduction:
The intensive production of agronomic crops, especially vegetables, in New York has contributed to reduced soil quality, and resulted in lower crop productivity and farm profitability. Among the causes are soil compaction, crusting, low organic matter, increased pressure and damage from diseases, weeds, insects and other pests as well as a lower density and diversity of beneficial organisms. These constraints have increased the interest of growers and other land managers in assessing the health status of their soils and in implementing sustainable soil management practices. Many New York growers were starting to realize that poor soil health severely limits their farm’s profitability and viability, as degraded soils increase the need for additional crop inputs (fertilizer, irrigation, pesticides, diesel fuel, etc.) and reduce yields (quantity and quality). To address this recognized need, a group of interested growers, extension educators, researchers and private consultants established a Program Work Team (PWT) on Soil Health. The initial Soil Health PWT consisted of 35 members, including 14 growers and 9 extension educators and since then the membership has increased to over 45 and has been opened up to all interested individuals. As a result, the formation of this group has been instrumental in focusing soil health activities and securing outside funding. In the past, soil health/quality initiatives were focused on the better understood soil physical and chemical properties until more recently, when a new concept of soil health emerged. This concept integrates new information about soil biological properties with our knowledge of soil physical and chemical processes affecting crop health, crop productivity, and environmental impacts of farming (Magdoff and Weil, 2004; Pankurst et al, 1997). Numerous methods can be used to measure the physical, chemical and biological properties of the soil including but not limited to bulk density, pore size distribution, aggregate stability, organic matter, cation exchange capacity, micronutrients, nitrogen mineralization, glomalin, and decomposition rate, etc. While each measurement can provide information about the soil, when assessing soil health in an agricultural system it is important to identify measurements or indicators that are not only relevant to soil functions (such as adsorption and infiltration of water, retention and cycling of nutrients, decomposition of organic amendments, pest and weed suppression, detoxification of harmful chemicals, sequestering of carbon, etc.) but are sensitive to changes in management practices such as tillage, crop rotation, and use of manures and composts (Abawi and Widmer, 2000; Doran and Zeiss, 2000). Also, it is critical that the measured properties are good indicators of important soil processes, suggest major constraints to productivity and are practical, rapid and inexpensive.- Fifty growers will implement two or more promoted management practices to improve soil quality and health on their farms. The latter may include: using new soil health tests to determine appropriate management practices; incorporating a new main and/or cover crop into their rotation scheme, changing tillage practices employed, using compost or other soil amendments, and adopting sustainable pest management practices, including IPM strategies. Gone beyond it.A “soil health assessment protocol” will be developed and field-tested to the stage where it is ready to be institutionalized (i.e., become a permanent feature of fee services) offered by Cornell University and/or commercial soil testing laboratories. Achieved it.