Establishing a protocol for receiving cattle that are at-risk of having a mineral deficiency

Final report for SW18-058

Project Type: Research and Education
Funds awarded in 2018: $206,209.00
Projected End Date: 03/31/2022
Grant Recipient: Utah State University
Region: Western
State: Utah
Principal Investigator:
Dr. Kara Thornton
Utah State University
Expand All

Project Information

Abstract:

The western US produces nearly 25% of the calf crop in the country and houses approximately 18% of the total feedlot cattle. However, this region is primarily comprised of arid rangelands with limited forage production and both seasonal and yearly extremes in forage quality. Specifically, many areas in the western US are known to be deficient in copper, zinc, manganese and/or selenium. Despite these known deficiencies, there are no standard protocols available to help producers successfully receive cattle that are at-risk for having a mineral deficiency. Trace minerals are required for proper immune cell function and are especially important in stressed or disease challenged animals, such as newly received feedlot cattle. In the western US, annual death losses of cattle total 336,000 and disease is the causative factor in 31.5% of these deaths. This research helped to determine the best practices for producers to assimilate at-risk cattle into their operations, resulting in both improved cattle health and economic viability of producers. In this project, two different research trials were conducted: 1) a mineral deficiency was created in stressed, receiving cattle and different strategies will be tested to determine which method best improves mineral deficiency, immune status and feedlot performance; and 2) the findings of research trial one were used in trial two in an applied setting where cattle coming from areas known to be mineral deficient were obtained and treated with the best practices determined in trial one. Additionally, information learned during the course of this research trial was disseminated to the public and producers through publication of extension fact sheets,  development of online materials, and presentations as well as trainings for extension agents and VoAg teachers to ensure these findings were accessible to a broad audience.

Project Objectives:

The overall goal of this research was to determine the best practices producers can employ when receiving feedlot cattle that are at-risk of being mineral deficient. The following objectives were  completed to reach the overall goal:
Objective 1. Determine the effects of different receiving strategies designed to mitigate mineral deficiency on subsequent cattle performance while in the feedlot.
Hypothesis: We hypothesized that provision of minerals to mineral deficient, or “at-risk,” cattle prior to vaccination will result in improved animal performance when compared to at-risk animals that are vaccinated while having a low mineral status.
Sub-objective 1.1. Determine the optimum intervention strategy in order to mitigate the effects of low mineral status within cattle. We analyzed different methods of providing mineral supplementation. In addition, we also investigated the time required for each supplementation method to produce adequate mineral levels within cattle. This provided integral information that allowed for the determination of how different mineral intervention strategies affect animal mineral status.
Sub-objective 1.2. Determine the effects of different intervention strategies on feedlot performance and carcass quality of receiving calves. This determined how different intervention strategies affect gain, feed intake, feed efficiency, fat deposition, carcass quality and incidences of morbidity and mortality while animals were in a feedlot setting. Collection of this data provided important insight into how different intervention strategies impacted subsequent performance of animals.
Sub-objective 1.3. Determine the economic impacts for producers associated with each different mineral intervention strategy and subsequent animal performance. In order to make this work relevant to producers, it was important that we complete an economic analysis to show producers how these different mineral intervention strategies may impact their bottom line.

Completion of objective 1 determined the necessary length of the intervention strategies to increase mineral status and the effects mineral status on feedlot performance, as well as the economic production costs associated with poor mineral status resulting from poor animal performance.

Objective 2. Determine how the mineral status of receiving cattle influences their ability to respond to vaccination.
Hypothesis: We hypothesized that receiving cattle that have a mineral deficiency will not respond as well to vaccination, resulting in increased incidence of morbidity and/or mortality.
Sub-Objective 2.1. Determine the effects of mineral status intervention on vaccine immune response of animals. This determined whether mineral deficiency alters vaccine response as well as which intervention strategies can be employed to improve vaccine response and, thus, the health of the animal.
Sub-Objective 2.2. Determine the effects of mineral status intervention on respiratory disease occurrence and vaccine immune response of animals. This data provided valuable insight into whether or not these different mineral intervention strategies impact both the number of occurrences and the severity of bovine respiratory disease episodes in these cattle.
Completion of objective 2 will provide insights into the effect of mineral status on disease and vaccine response in receiving feedlot cattle.

Objective 3. Execute an innovative and impactful outreach program on the implementation of strategies to improve mineral status in receiving cattle.
Outreach Plan: Improve communication among cow-calf producers, feedlot producers, and researcher and extension personnel by building a communication network facilitated by a partnership between producers and Utah State University.
Sub-objective 3.1. Publish and present data obtained from the research trials through traditional extension channels. The results of the research project will be shared through traditional channels such as publication in scientific journals and extension facts sheets. In addition, several field days designed to disseminate research results will be hosted by Utah State University.
Sub-objective 3.2. Development of educational materials for a “train the trainer” program to assess mineral status and supplementation protocols in beef cattle. Our extension team will institute a “train the trainer” program in which Utah county extension agents as well as appropriate personnel from other states will be trained to help their constituents determine the mineral status of their herds and measures to address mineral deficiencies. These trainings will occur both “in-person” and through development and use of on-line modules.
Sub-objective 3.3. Develop on-line learning modules that can be accessed by all members of the public around the country. We will develop online learning modules that can be accessed by anyone that has access to the internet. These learning materials will be geared towards educating producers, researchers, VoAg teachers, and extension agents on how different mineral supplementation strategies at receiving impact subsequent cattle performance and the economics of the operation.

Cooperators

Click linked name(s) to expand/collapse or show everyone's info
  • John Ferry - Producer (Educator and Researcher)
  • Jeremy Cowley - Producer (Educator)

Research

Hypothesis:

We hypothesize that provision of minerals to mineral deficient, or “at-risk,” receiving cattle prior to vaccination will result in improved animal performance when compared to at-risk animals that are vaccinated while having a low mineral status.

Materials and methods:

To achieve the overall project goal, we conducted two different research trials. In the first, mineral deficiencies were created in steers obtained from the Utah State University Ranch. This mineral deficiency was created by not supplementing the calves with any minerals once they have been weaned and providing the animals with feeds that are known to be mineral deficient. Liver testing was completed to ensure that these animals were in fact mineral deficient. These animals were subjected to travel stress and received at the Utah State University Feedlot. The Utah State University is equipped with a full working facility, including a hydraulic squeeze chute, as well as pens equipped with a GrowSafe System that the animals were fed in to gain individual measurements. Three different intervention strategies were employed and compared to a control group (no intervention). The four treatment groups will be: 1) control, no treatment, n=10; 2) multi-min® injection, n=10; 3) provision of minerals at NRC recommended levels, n=10; and 4) provision of minerals above NRC recommended levels, n=10. Animals were vaccinated within 24-48 hours after receiving as per typical feedlot practices. Blood and liver samples were collected on days 0, 5, 10, 20, 30 and 40 after intervention strategies had been administered to determine immunity and mineral status, respectively. All treatment groups were combined in a traditional feedlot setting where performance data, as well as morbidity and mortality occurrences, were recorded.

In the second research trial, receiving cattle from known mineral deficient backgrounds were obtained from a commercial feed yard in Utah: Venice Feed and Livestock (owned and operated by Mr. Jeremy Cowley). Venice Feed and Livestock specializes in receiving “at-risk” cattle and often receives cattle from the Navajo Nation and the Arizona Strip, areas which are known to be mineral deficient. The best practices determined in research trial 1 were tested again in research trial 2 in high-risk cattle that were obtained by a producer that specializes in receiving mineral deficient cattle.

Objective 1. Determine the effects of different receiving strategies designed to mitigate mineral deficiency on cattle performance while in the feedlot.

Sub-objective 1.1. Determine the optimum intervention strategy in order to mitigate the effects of low mineral status within cattle. In order to determine mineral status of each animal, liver biopsies and serum were collected on days 0, 5, 10, 20, 30 and 40 after implementation of the different intervention strategies to determine the time frame during which mineral deficient cattle remain ‘at-risk’ after receiving mineral supplementation. This was completed in all animals in research trial one and two. We analyzed mineral status in  liver as it provides a more clear picture of the overall mineral status of an animal. Blood measures are frequently used in assessment because they are significantly correlated to nutritional status of some trace minerals (15). However, there are several limitations to utilizing blood mineral analyses (16). Liver is the organ that often best represents the status of many trace minerals in animals (17). As such, we utilizes liver to assess mineral status. Mineral status was determined in liver using high pressure liquid chromatography (HPLC) techniques as previously described (18). The minerals that were tested include cobalt, copper, iron, iodine, manganese, molybdenum, selenium and zinc, each of these minerals has been shown to have agricultural and economic impact in the western US (19).

Sub-objective 1.2. Determine the effects of different intervention strategies on feedlot performance and carcass quality of receiving calves. All animals in research trial 1 and 2 were housed at the USU South Farm Feedlot, placed into pens equipped with GrowSafe bunks and weighed bi-weekly to determine intake, feed efficiency, and average daily gain. Additionally, back fat thickness and rib-eye area were measured by a trained technician bi-weekly when animals are weighed to assess efficiency of muscle and fat deposition within the animals. Animals were also monitored for occurrences of morbidity and mortality through the trial. Occurrence and duration of sickness as well as the associated treatment costs were recorded to access morbidity. Once animals reached 10 mm of back fat thickness, they were harvested at a JBS commercial harvest facility located in Hyrum, UT. Economically important carcass traits were obtained, including hot carcass weight, ribeye area, quality grade, yield grade, back fat thickness and marbling score. These measurements were also obtained in research trial 2.

Sub-objective 1.3. Determine the economic impacts for producers associated with each different mineral intervention strategy and subsequent animal performance. To do this, we assessed the costs (mineral, labor, time etc.) associated with each intervention strategy relative to how the animal subsequently performs in the feedlot. We analyzed gain, feed efficiency, and costs associated with treatment of sickness. The actual cost differences and differences from the different mineral supplementation strategies were analyzed to determine which method results in the greatest economic return for the producers. All economic analyses were performed by Dr. Ryan Larsen.

Objective 2. Determine how mineral status of receiving cattle alters their ability to respond to vaccination.

Sub-Objective 2.1. Determine the effects of mineral status intervention on vaccine immune response of animals. To determine the ability of the animals to respond to vaccination after different intervention strategies, we conducted a longitudinal cohort study. Cattle in all treatment groups were administered an upper respiratory viral (IBR, PI3, BVD, BRSV) vaccine per standard receiving protocol and labeled instructions. Vaccine response was measured by analyzing immunoglobulin and immune cytokines present in the blood on days 0, 5, 10, 20, 30 and 40 after receiving an intervention treatment. Immune status was measured in all animals in research trials 1 and 2 to determine the effects of mineral status on physiological parameters of immunity in receiving cattle.

Sub-Objective 2.2. Determine the effects of mineral status intervention on respiratory disease occurrences. The cohort of receiving cattle was monitored for respiratory sickness (cases) daily and those displaying clinical signs of upper respiratory disease were pulled for treatment. Temperatures from cattle with signs of coughing, increased respiratory rates, lethargy, or reluctance to eat were taken daily. Those with clinical signs and a rectal temperature greater than or equal to 40oC were classified as a case. Mineral status was compared to development of disease to discern whether the intervention strategies employed affect disease occurrence. In addition, costs associated with treatments were recorded to determine the economic effect that the different intervention strategies had on animal health and performance.

Objective 3. Execute an innovative and impactful outreach program on the successful implementation of different strategies to improve mineral status in receiving cattle.

Outreach Plan: Improve communication among cow-calf producers, feedlot producers, and researcher and extension personnel by building an interactive communication network that will be facilitated through a partnership between producers and Utah State University.

Sub-objective 3.1. Publish and present results of the research trials through traditional extension channels. Results will be published in technical and trade journals, and in extension fact sheets. The data obtained in this research will also be published in peer-reviewed, scientific journals. Findings will be presented at popular venues attended by producers such as the Utah Beef Cattle Field Day (Provo, UT), Utah Cattlemen’s Convention (SLC, UT), Cowman’s Repro Workshop (Alton, UT), and the Arizona/Utah Range Cattle Symposium (Hurricane, UT). In addition, findings will be presented at national scientific conferences, such as the annual meeting for the American Society for Animal Science.

Sub-objective 3.2. Development of educational materials for a “train the trainer” program to assess mineral status and supplementation protocols in beef cattle. Materials, such as presentations and informational sheets, will be created for both extension agents and VoAg teachers. This “train the trainer” model is known to multiply outcomes. Agents will be trained at USU’s annual extension conference (March) and annual area in-service training (September) with full access to printed, multimedia, and presentation medium. Furthermore, the project producers will hold on-site demonstrations at their ranches to give producers a hands-on opportunity to see the results of the proposed research project.

Sub-objective 3.3. Develop on-line learning modules that can be accessed by all members of the public around the country. On-line learning modules will be developed in coordination with USU extension services as well as the USU College of Agricultural and Applied Sciences marketing team. These will be short video clips that are accompanied by more in-depth materials, such as extension articles and online quizzes. These on-line learning modules will accessible by anyone who has on-line access and will be geared towards providing the information to producers, VoAg teachers and county extension agents.

Development of this extension program will be integral for producers located across the western region of the United States and in the country as a whole. The effects of climate change are felt in some way by most people around the world. These effects are also particularly relevant to the agricultural industry as alterations in climate have a profound effect on quality and composition of feedstuffs, which directly impacts productivity and health of livestock. As such, it is imperative that we gain understanding as to the proper way to handle mineral deficient cattle as well as distribute this information to producers nationally, with particular emphasis on the Western United States.

Research results and discussion:

In November 2019 we completed research trial 1. We have finalized all aspects of this study. In brief, it was found that providing oral mineral at levels above those recommended by the NRC was most effective at increasing liver mineral concentrations. However, the different mineral intervention strategies largely had no effect on feedlot performance, carcass quality, or economic viability. A manuscript detailing this research is in the final stages of preparation 

brief description of study conducted: In June 2019, we began a research trial with 40 steers from the USU herd that came from a mineral deficient background. These animals were placed into one of four different treatment groups: 1. control; no mineral intervention give, n = 10 2. multi-min injection, n = 10 (MM) 3. 100% NRC required minerals in diet, n = 10 (AM) and 4. 200% NRC required minerals in diet, n=10 (HM). Cattle were placed in these treatment groups for the first 40 days of the trial. After that time, all animals were fed the same ration with mineral levels at 100% NRC requirements. Liver biopsies and blood were collected from each animal at days 0, 5, 10, 20, 30 and 40 of the trial in order to assess mineral status and vaccine response. Cattle were fed in a GrowSafe system allowing for collection of individual feed intake information. During the trial, cattle were weighed every 14 days and an ultrasound of the ribeye and backfat thickness was performed every 28 d. At the end of the trial, all cattle were commercially harvested at the JBS plant in Hyrum, UT where individual carcass information was provided for each animal. Below, are the following results: weight gain, backfat thickness, ribeye area, immune response, feed intakes, feed efficiency, feeding behavior, liver mineral concentrations of zinc, copper, manganese, selenium, and cobalt. The only results we are still analyzing are the economic analyses.  

Results: 

Here is a link to all of the tables and figures: Results of Trial 1

serum cortisol: There was no difference in cortisol level between steers from different treatment groups following 4 h of travel stress prior to beginning the trial (P=0.99, table 4)

weight gain: Average daily gain was analyzed over 2 week periods of the 110 day trial and no differences between treatments were noted during any of the two week periods (P > 0.05), except for days 56-69 where animals receiving the high mineral treatment gained more than those receiving the shot (p = 0.05, Table 5). 

Dry matter intake: Cattle receiving the HM treatment had increased DMI intake compared to those receiving the AM treatment throughout the study (P=0.03, figure 1).

Feed efficiency: No differences in feed efficiency, measured as gain:feed, were noted between steers from the different treatment groups (P=0.61, data not shown).

ribeye area: Cattle receiving MM had decreased ribeye area compared to the other three treatments (P < 0.05, Figure 2b)

backfat thickness: Cattle that received MM had decreased backfat thickness when compared to the HM and control treatments (P < 0.05, Figure 4a)

liver mineral concentrations: Liver cobalt increased after day 10 of the trial in steers receiving the AM and HM treatments and stayed increased through day 40 of the trial (P < 0.05, Figure 3a). Liver copper initially increased in animals receiving the MM treatment, and then decreased after day 30, whereas animals reviving the HM treatment saw an increase in liver copper by day 10 that continued through the 40 day trial (P < 0.05, figure 3b). No differences in liver manganese were noted (P > 0.05, figure 3c). Liver selenium initially increased in animals receiving the MM treatment peaked at day 5 of then decreased after that, and the HM and AM both increased over time compared to the control and stayed increased throughout the initial 40 days of the trial (P < 0.05, Figure 3d). No differences in liver zinc were noted (P > 0.05, figure 3e).

Carcass data: No differences were detected in carcass data (P > 0.05, table 6). However, there was a tendency for animals reviving the HM treatment to have an increased hot carcass weight compared to those receiving a multi-min shot (P=0.08, table 6).

Feeding behavior: Steers consuming the HM treatment had increased bunk visits and feed bouts days 28-41 of the trial (P < 0.05, figure 4), but consumed less each time they visited the bunk these same days (P < 0.05, Figure 5). Additionally, the animals that consumed the HM treatment spent less time with their head down in the bunk each time they visited (P < 0.05, Figure 6) and visited the bunk for a longer period of time (P < 0.05, figure 7). 

Antibody response: antibody titers were assessed for BPIV3 and BHV and no differences were noted between steers in the different treatment groups (P > 0.05, Figure8). 

Discussion: The objectives of this study were to determine how different mineral supplementation strategies impact feedlot performance, concentration of minerals in the liver, immunity to potential virus exposure and carcass quality in mineral deficient receiving cattle. The data presented provide a comparison between how varying levels of minerals affect the immune response, health, and performance of stressed feeder cattle. We had hypothesized that animals receiving either the MM or HM treatment would have increased feedlot performance, carcass quality, and immune response when compared to animals receiving either the AM treatment or the control. Weight gains of steers did not differ between the different treatments. Results from the present study also indicate that ADG, DMI, and FE were unaffected by the varying levels of minerals supplemented. However, liver Cu and Se were commonly higher in steers fed the HM when compared to the other treatments. Liver Mn and Zn were unaffected by the different treatments. In addition, there was no difference in economic viability of the cattle receiving any of the different treatments. The data in the present study show that immune response to a potential virus was not affected. To our knowledge no previous research has looked into immune response to a potential virus with supplementing varying levels of TM. More research is needed to explore how TM effect immunity. Carcass quality was also not affected by feeding varying levels of minerals. By feeding increased levels of minerals, hepatic Cu and Se concentrations increased. However, more research is needed to determine the effects that varying levels have on cattle performance, health and carcass.

Research Trial 2 is still underway. Animals will be harvested in June 2022 and this report can be updated as soon as research trial 2 is completed.

 

 

 

Research conclusions:

The results of trial 1 indicate that providing the different mineral intervention strategies to at-risk cattle entering the feedlot did not impact feedlot performance or carcass quality of the animals. However, animals that received MM had a fairly fast increased in liver mineral concentrations that decreased by about day 20 of the trial. Provision of oral mineral at both HM and AM levels increased (incrementally) over the 40 d period with HM increasing the most. Based on liver mineral concentrations, we believe that providing both a MM shot and oral mineral at HM levels will results in the quickest return to normal mineral levels. However, there was no impact on animal performance, carcass quality or economic viability. These data demonstrate that providing a multi-min shot for the first 40 d to cattle that are mineral deficient will result in the lowest cost of gain, but that cost of gain is not statistically significant from the other treatments. 

We are waiting to complete analysis of the results in trial 2 as these cattle are much more indicative of high-risk cattle in the western US and will help us to answer some of the questions that remained after completing research trial 1. 

 

Participation Summary
3 Farmers participating in research

Education

Educational approach:

Execute an innovative and impactful outreach program on the implementation of strategies to improve mineral status in receiving cattle.
Outreach Plan: Improve communication among cow-calf producers, feedlot producers, and researcher and extension personnel by building a communication network facilitated by a partnership between producers and Utah State University.
Sub-objective 3.1. Publish and present data obtained from the research trials through traditional extension channels. The results of the research project will be shared through traditional channels such as publication in scientific journals and extension facts sheets. In addition, several field days designed to disseminate research results will be hosted by Utah State University.
Sub-objective 3.2. Development of educational materials for a “train the trainer” program to assess mineral status and supplementation protocols in beef cattle. Our extension team will institute a “train the trainer” program in which Utah county extension agents as well as appropriate personnel from other states will be trained to help their constituents determine the mineral status of their herds and measures to address mineral deficiencies. These trainings will occur both “in-person” and through development and use of on-line modules.
Sub-objective 3.3. Develop on-line learning modules that can be accessed by all members of the public around the country. We will develop online learning modules that can be accessed by anyone that has access to the internet. These learning materials will be geared towards educating producers, researchers, VoAg teachers, and extension agents on how different mineral supplementation strategies at receiving impact subsequent cattle performance and the economics of the operation.

Educational & Outreach Activities

20 Consultations
4 On-farm demonstrations
1 Online trainings
1 Published press articles, newsletters
3 Tours
6 Webinars / talks / presentations
2 Workshop field days

Participation Summary:

50 Farmers
100 Ag professionals participated
Education/outreach description:

Dr. Kara Thornton and/or Dr. Matt Garcia have spoken to approximately 20 different producers who have had questions regarding the outcome of our study. 

Dr. Matt Garcia has traveled to three different areas and given on-farm demonstrations regarding the collection of samples for mineral analysis, identifying if your cattle are mineral deficient, how to test feed for mineral deficiency and provide recommendations for producers in different scenarios based on the results of this research. 

Dr. Kerry Rood has traveled to four different feedlots and three different sale barns to discuss the research findings of this work and provide recommendations for producers. In addition, he has also discussed different scenarios regarding mineral deficiency with these producers to help each producer determine best practices to follow in different scenarios. 

Three different fact sheets are currently in preparation.

One manuscript that will be submitted for publication in a peer-reviewed journal is in the final stages of preparation and another two are in progress. 

Dr. Kara Thornton gave an online Stock and Flock Talk that has been posted to YouTube and detailed the findings of research trial 1. This currently has 841 views. Here is a link to that presentation: https://www.youtube.com/watch?v=Q6--qlJgXyI 

The findings of this research were presented at the Utah Cattlemen's meeting in December of 2021 by Dr. Kara Thornton.

This work was also presented by an MS student, Mr. Tevan Brady, at the Annual Meeting of the American Society for Animal Science in July 2020. In addition, three different students (an MS student, an undergraduate research, and a veterinary student researcher) presented findings of this research at the Utah State University Student Research Symposium hosted by the Department of Animal Dairy and Veterinary Science in August 2019. 

 

Learning Outcomes

25 Farmers reported changes in knowledge, attitudes, skills and/or awareness as a result of their participation
Key areas taught:
  • mineral supplementation
  • testing cattle for mineral status
  • testing feed for mineral status
  • determining what mineral supplementation strategy to use

Project Outcomes

5 Farmers changed or adopted a practice
25 Farmers intend/plan to change their practice(s)
4 New working collaborations
Project outcomes:

Completion of this project has provided beef producers with best practices to follow when receiving mineral deficient cattle. 

We are still waiting on the results of research trial 2, but as soon as that is completed, we can more succinctly address the specific outcomes.

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture or SARE.