Sustainable Honeybee Strains for Western North Carolina

Project Overview

Project Type: Farmer/Rancher
Funds awarded in 2010: $9,959.00
Projected End Date: 12/31/2011
Region: Southern
State: North Carolina
Principal Investigator:
Ryan Higgs
Blue Ridge Apiaries

Annual Reports


  • Animals: bees


  • Animal Production: general animal production
  • Education and Training: on-farm/ranch research
  • Pest Management: genetic resistance, integrated pest management


    The sharp decline in the domestic honeybee population has been widely reported in recent years, as have been the consequences to a continued decline on agriculture dependent upon honeybee pollination. An annual national average for colony loss of thirty percent is not sustainable for beekeepers nor growers of pollinated crops. The culprits responsible for these losses are diverse, including varroa mites, tracheal mites, nosema, brood diseases, pesticides, and reduced forages. Thankfully, researchers have developed several strains of honeybees that have been genetically selected to include traits that are favorable to cope with some of these stresses. These improved stocks have inadvertently created a challenge for Southern beekeepers. With so many genetically improved strains appearing on the scene in a relatively short period of time, it is difficult for beekeepers to determine which strain is best suited for their circumstances. The introduction of each strain includes claims that are not only subjective, but are also relative in terms of utility and geography. For example, a colony that does well pollinating California almonds may not be the best colony to capitalize on Southern Appalachia's sourwood honey flow. Southern beekeepers need to understand how each strain will resist disease and pest pressures in their area, pollinate Southern horticultural crops, capitalize on local honey flows, and adapt to the local climate in general.


    This project studied three improved stocks: Minnesota Hygienic, New World Carniolan, and Russian bees. Each of these were developed to meet the challenges of modern beekeeping described above. It is important to understand the development of each strain as there are significantly different ideological differences.

    Marla Spivak at the University of Minnesota is credited with the development of Minnesota Hygienic Bees. In the mid-nineties, she identified and genetically selected for two recessive traits. Collectively, these traits are responsible for the behavior in honeybees involving the detection, uncapping, and removal of compromised brood from the nest. This double recessive trait has been shown to be very successful in limiting brood diseases such as chalkbrood and foulbrood, but also in reducing varroa mite pressure. Currently the University of Minnesota certifies the trait in three different commercial operations via the freeze killed brood assay, and allows those operations sell open-mated "Minnesota Hygienic" queens to the public.

    Sue Cobey is credited with the development of the New World Carniolan line of bees. In establishing this strain, queens were collected from the U.S. and Canada that descended from Carniolan stock. Selected breeder queens were enrolled in a closed population breeding program that selected for brood viability, temperament, build-up, hygienic behavior, disease resistance, abscense of swarming behavior and honey production. New World Carniolan bees are available from several sources, none of which involve third-party certification.

    Russian bees were imported from the Primorski region of Russia by the USDA. These bees coexisted with varroa mites for well over a century, and have adapted accordingly. After establishing the breeding program, the USDA Bee Lab in Baton Rouge handed off responsibility of the program to the Russian Honeybee Breeders Association, a small group of beekeepers dedicated to propagating the strain. The Baton Rouge Lab certifies stock for the Association via DNA analysis, who in-turn offers open-mated queens to the public.

    Project objectives:

    The objective of the project was to evaluate the merits of each of the three stocks described above. The field trials conducted provided the opportunity for unique side-by-side comparisons. In conducting this research, the hope was to provide regional bee breeders with greater insight so that they could be in a better position to make informed decisions regarding their stock selection. In-turn, beekeepers purchasing such stock would be rewarded with locally adapted, genetically improved stock that fits their beekeeping needs.

    Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture or SARE.