Project Overview
Annual Reports
Commodities
- Vegetables: tomatoes
Practices
- Crop Production: biological inoculants
- Education and Training: demonstration, extension, mentoring, on-farm/ranch research, participatory research, workshop
- Farm Business Management: budgets/cost and returns, risk management
- Natural Resources/Environment: biodiversity
- Pest Management: biological control, genetic resistance, integrated pest management, prevention
- Production Systems: agroecosystems, organic agriculture, transitioning to organic
- Soil Management: soil microbiology
- Sustainable Communities: new business opportunities, urban agriculture
Abstract:
This project was completed in 2017 and all of our major performance targets were obtained, if not exceeded as they were described in the proposal. A publication from Lani Meyer’s MS Thesis was published in Scientia Horticulturae. A second publication has been in developed from Ravin Poudel’s PhD Dissertation and will be submitted in 2018 which describes the microbial ecology portion of the project. Furthermore, we were successful at acquiring a NIFA-SCRI CAP grant in collaboration with NC State and numerous other institutions that was built on data generated from this project. Similarly, David Loewen is currently preparing to defend his MS Thesis in May 2018 and although the majority of his work is funded by NIFA-SCRI, it was built on knowledge and infrastructure that was developed with this project. We were very successful at communicating the results of our work to scientific and grower audiences in six states (KS, MO, IA, MN, OK, HI) in 2017 in addition to more than 8 field days, twilight tours, and other hands-on educational opportunities at the Olathe Horticulture Center. Education efforts also included the preparation of a tomato grafting extension publication that will be published in 2018 through KSRE. All of these venues were very successful at making changes in knowledge and behavior of growers. Since 2013, this project has contributed directly towards technology adoption and more than 17 growers in the NCR-SARE region to utilized over 18,500 grafted plants in their high tunnels since this time.
Project objectives:
The objectives of this project are (1) to identify rootstocks that improve productivity and reduce disease losses in the Great Plains through a series of on-farm and university research trials, (2) to determine optimum grafting/healing conditions that reduce risk of crop failure and increases the successful implementation of grafting for small-scale growers, (3) evaluate the effects of rootstocks on rhizosphere microbial communities; and (4) disseminate grafted propagation methods as well as the results of our research through an integrated extension program. We will perform a series of replicated field studies including at least two on-farm trials per year that evaluate tomato rootstocks for their performance in regards to soilborne disease, crop yield, and marketability. Specific outputs include (1) Extension publications, field tours, web materials, videos, and hands-on workshops; (2) Research journal publications, presentations, and teaching materials. Short-term outcomes include (1) Increased grower knowledge for grafting implementation; (2) Increased scientific community understanding of rhizobiome interactions. Mid- and Long-term outcomes include: (1) Changes in grower behavior related to propagation of grafted plants and rootstock selection; (2) Increased local availability of grafted plants; (3) Further scientific exploration of grafting and rhizobiome interactions, in support of fuller understanding of mechanisms of disease resistance and increased vigor. This proposal builds on a project that is supported by the Ceres Trust Organic Research Initiative.