Cultivating a morel mushroom industry in the North Central United States

Project Overview

Project Type: Research and Education
Funds awarded in 2019: $199,993.00
Projected End Date: 12/31/2023
Grant Recipient: Michigan State University
Region: North Central
State: Michigan
Project Coordinator:
Dr. Gregory Bonito
Michigan State University

Information Products


  • Miscellaneous: mushrooms


  • Crop Production: agroforestry, forest farming, high tunnels or hoop houses
  • Education and Training: on-farm/ranch research, participatory research, workshop
  • Production Systems: agroecosystems, morel production systems
  • Sustainable Communities: urban agriculture

    Proposal abstract:

    Morels (Morchella spp.) are iconic spring mushrooms in the North-Central Region of the United States and a high-value commodity in food markets. Recent discoveries on morel mating systems and exogenous nutrition have led to breakthroughs in morel cultivation in China, resulting in thousands of hectares of morel cultivation in China. These new techniques have not yet been introduced to the United States, but they have the potential to dramatically expand the US domestic market. Thousands of pounds of morels are picked and sold fresh across the North-Central Region every year. In springtime, when morel mushrooms naturally appear, they can command a price of more than $30 per pound. Prices for morels out-of-season in the North Central Region may reach upwards of $60 per pound. These high prices have led to a heightened interest in developing supply chains that might allow for commercial morel production. This study will advance outdoor cultivation techniques for black morels in the North Central Region. In parallel, it will gauge market potential and identify marketing strategies through focus groups of established networks of mushroom foragers and vendors, as well as through broader consumer surveys and taste tests. To help lessen risks for growers, we will also assess likely costs of production and identify minimum yield levels that growers would need to reach in order to break even economically. High value morel crops can help make small farms more profitable, improving their economic sustainability while improving soil health and crop diversity.

    Our biological research aims to capitalize upon a recent understanding of sexual mating types and nutritional demands of black morels to establish productive morel isolates and agricultural systems in high-tunnel, low-tunnel and forest settings in the North Central Region. Opportunities for co-cropping and rotating morel mushrooms alongside other crops, and through vertical and temporal stratification, will also be investigated. A reliable and consistent system for large-scale production of morels, together with informed marketing strategies, could provide great economic benefit to farmers across the region, thereby improving farm sustainability by integrating this high-value crop into agricultural systems. Our research will also inform strategies on how best to market these mushrooms, given consumer preferences and attitudes. We will transfer knowledge obtained through this research to interested farmers in the region through hands-on morel cultivation workshops planned in Year 3 of this project, and through publications, blogs and podcasts.

    Project objectives from proposal:

    This project aims to develop morel cultivation in forest, low- and high-tunnel systems, and will compare yield and market considerations among these systems. Project results from consumer surveys and panel focus groups will help in estimating market demand along with demographics and preferences pertaining to different morel production methods and species. Our results will identify viable production practices, profitable yield thresholds, and promising marketing strategies for the morel industry. Results from outdoor morel cultivation research will establish a new knowledge base for a novel, agronomically and economically sustainable crop and co-cropping systems for the North-Central Region.

    Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture or SARE.