Cultural practices to improve fresh market onion quality and profitability

Project Overview

ONE09-102
Project Type: Partnership
Funds awarded in 2009: $9,969.00
Projected End Date: 12/31/2009
Region: Northeast
State: Pennsylvania
Project Leader:
Christine Hoepting
Cornell Cooperative Extension - Cornell Vegetable Program

Annual Reports

Commodities

  • Vegetables: onions

Practices

  • Education and Training: extension, on-farm/ranch research
  • Farm Business Management: budgets/cost and returns
  • Pest Management: cultural control, mulching - plastic
  • Sustainable Communities: sustainability measures

    Proposal abstract:

    CURRENT ISSUE

    The problem for small-scale diversified fresh market vegetable growers who grow onions is that the profitability of this crop has become greatly compromised by increased losses due to bacterial bulb rots. If bacterial rots cannot be managed, the profitability of the sweet onion market will not be sustained or expanded.

    Small-scale fresh market production of onions is intensive:

    Small-scale diversified vegetable growers sell their onions, mostly sweet onions, through produce auctions and direct markets. These lucrative markets pay $1 and more for colossal sized bulbs (> 4 inches in diameter) at about $0.50 per pound. To achieve such large bulb sizes, onions are typically planted as early in the spring as possible on black plastic mulch with trickle irrigation. Typical plant spacing is 4 rows of onions on a 3 foot wide bed with 2 rows of drip tape, and plant spacing ranges from 6 to 12 inches. The black plastic mulch increases soil temperature, and thus onion growth, early in the season. Onions are harvested by hand. In New York, the amount of onions grown on these small farms ranges from 300 to 1500 feet of plastic beds (4 rows of onions wide) with a value of $800 to $1600 per 100 feet of row. In Pennsylvania, the amount of onions grown on these small farms ranges from 3000 to 12000 feet of plastic or 25,000 to 100,000 plants with a value of $10,000 to $12,000 per acre. Sweet onions are a new and expanding crop in Pennsylvania within the past 5 years. During this time, the number of growers increased 11 fold from 3 to 34 in Lancaster County.

    Bacterial rots are draining the profitability of fresh market onions:

    During the past 5 years it has been common for the incidence of bacterial rot to be 35 to 45% in both Pennsylvania and New York, costing fresh market onion growers $350 to $700 per 100 feet of row or $3500 to $5400 per acre. Last year in n Pennsylvania, 34 growers lost a total of $140,000 to bacterial rot.

    The sweet onion market is expanding and there is a broker in PA who would like to sell 3 times the current volume. As the “Eat Local” movement gains force throughout the Northeast, consumers are searching for local vegetables throughout the year. Unfortunately, the extreme losses fresh market onion growers are experiencing due to bacterial rot is a major deterrent for growers to increase or invest in onion production. The bacterial rot problems also prevent growers from being able to store their onions and market them throughout the winter when prices are higher, preventing them from capitalizing on the renewed interest in buying local. If bacterial rots could be managed to economically acceptable levels, small-scale fresh market growers stand to acquire a potential $1.2 million dollar sweet onion market.

    Chemical tactics have failed to control bacterial rots:

    Attempts have been made by several growers, to control bacterial rot in onions with copper bactericides and other chemicals such as Oxidate. For example, it has been reported in PA that weekly sprays of various bactericides starting as early as the second week in May when onion plants have just 5 leaves and continuing until the pre-harvest entry interval of the bactericide resulted in unacceptably high incidence of bacterial rot (i.e. > 30%). Some farmers face losses of over 50%. Although, bactericides may play a role in the management of bacterial rot of onion, they need to be part of an integrated management system that incorporates various cultural tactics.

    Project objectives from proposal:

    The focus of this project is to evaluate, demonstrate and encourage adoption of cultural tactics to reduce bacterial rots in sweet onions grown for fresh market. We will evaluate the effects of mulch type and planting configurations on incidence of bacterial rot of onions, yield, bulb size and economic return.

    Bacterial rots of onions:

    Center Rot, caused by Pantoea ananatis, is one of the bacterial rots that has been identified in sweet onions grown on plastic on small-scale vegetable farms in PA and NY. Losses of 35 to 45% occur regularly. This is a relatively new disease of onions, first identified in Georgia in 1997. P. ananatis survives in numerous weeds and crops, and in the gut of tobacco and onion thrips, and to some extent in soil and water. It enters the plant through natural openings and wounds, and by infected thrips. Infection can occur when contaminated rain and irrigation water collect in the leaf whorl and leaf axils, leading to congestion of the leaf tissues and eventual entry of the bacterium into the plant. Disease development is favored by moderate to high temperatures (82.4 – 95 ˚F) that coincide with rainfall during or after bulb initiation. Generally, all cultivars are susceptible to center rot, although there is some variability in susceptibility. Sour skin, caused by Burkholderia cepacia, is another common bacterial disease of onion, similar to center rot, but more prevalent in soil and water, and favored by slightly cooler temperatures.

    Bacterial rots first appear as leaf blight symptoms on the young center leaves of the plant, resulting in yellowing or bleaching and wilting of these leaves. The infection progresses down the leaves and the neck, and eventually into the bulb. Affected bulb scales become soft and watery with rot and are yellowish-brown in appearance. It is not uncommon for bulbs infected with center rot or sour skin to be invaded secondarily by other bacterial organisms. At harvest, the foliage often tears away from the bulb when pulled. At first, the rot can be hard to detect, because the outer unaffected scales remain firm, but bulbs continue to break down in storage.

    Using alternative mulch types to reduce bacterial rots:

    Black plastic absorbs sunlight thus increasing soil temperature, which in turn, promotes early crop development of onions. However, during the heat of June and July, the warmer soil temperatures provided by the black plastic may actually be creating a more favorable environment for bacterial diseases to develop and spread. Preliminary temperature data collected by Reid in NY in 2007 showed that the daily high soil line temperature during July was approximately 10 ˚F cooler under reflective metallic silver mulch than it was under black plastic. This could be the difference between optimum and below optimum temperatures for bacteria to grow. In this project we will determine whether alternative mulch types, specifically, reflective metallic silver mulch or none (i.e. bare ground) result in lower incidence of bacterial rots compared to black plastic.

    Onion thrips are known to spread the center rot bacterium, thus, improved control of onion thrips may reduce incidence of bacterial rots. In a previous Northeast SARE Partnership grant (ONE06-62, Reflective mulch to repel thrips in onions), Reid and Hoepting demonstrated that fewer onion thrips colonized onions grown on reflective metallic silver mulch compared to those grown on black plastic. This project also demonstrated higher yields and larger bulb sizes in the onions grown on reflective metallic silver mulch, supposedly a result of lower soil line temperatures that are more favorable for bulbing. In this proposed project, we will study the interaction among bacterial rots, onion thrips and mulch type.

    Adjusting planting configurations to reduce bacterial rots:

    Small-scale fresh market onion growers use wide plant spacing (i.e. 6 to 12 inches) to produce onions with large bulbs. When plant spacing is too wide, this encourages the onion plant to produce leaves at the expense of bulbing. This growth habit results in plants with very large, bushy foliage and thick necks. It also can delay or inhibit normal maturity. Such growth habit could be favorable for development of bacterial diseases for the following reasons:
    • Large bushy leaves are more conducive to holding water in the leaf axils and whorls, which can favor initial bacterial infections.
    • Thick necks take longer to dry and remain succulent and greener for a prolonged period of time, which provides ideal conditions for bacterial diseases to spread from the leaves into the bulb.
    • Delayed maturity interferes with proper lodging and curing of the neck and bulbs, allowing for increased risk of bacterial infections in the leaves to spread into the bulbs, and reduced storability in general.

    It is possible for a bacterial infection spreading down a leaf to be stopped in its tracks before it makes its way into the bulb, if the neck tissue is no longer conducive to its spread (i.e. the tissue is dry and not green and succulent). Our proposed solution is to narrow plant spacing, which will produce plants with thinner, tighter necks that mature on time, which are less conducive to development of bulb rots and have improved storability.

    High planting density has been questioned by small-scale fresh market onion growers as a contributing factor to bacterial rots, because they wonder if planting 4 rows per bed (= 6 to 8 inch row spacing) is too dense for adequate air circulation through the canopy. It is a well known fact that leaf wetness, and water congested tissue is conducive to development and spread of bacterial diseases. Our proposed solution is to trial onions grown with 3 instead of 4 rows per bed with different plant spacings, which will increase between row aeration, minimize periods of water pooling in leaf axils and whorls, and make conditions less favorable for development and spread of bacterial diseases.

    This project is the first of its kind:

    Never before has such a comprehensive study been conducted to investigate the effects of cultural practices on bacterial rots in intensively managed fresh market onions. It is also the first study to be designed to investigate planting configurations on onions grown on plastic. This project will allow us to identify, demonstrate and promote simple cultural changes that will reduce incidence of bacterial rots and, improve storability and profitability of fresh market sweet onions. These techniques will be readily adopted by fresh market onion growers, acreage of intensively managed sweet onions will increase, more locally grown produce will be available to the consumer and the small-scale sweet onion industry will be sustained.

    Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture or SARE.