Brassicaceous Cover Crops to Reduce Root Knot Nematode and Improve Soil Quality in Protected Tomato Production Systems

Project Overview

Project Type: On-Farm Research
Funds awarded in 2016: $14,990.00
Projected End Date: 01/03/2017
Grant Recipient: University of Kentucky
Region: Southern
State: Kentucky
Principal Investigator:
Emily Pfeufer
University of Kentucky


No commodities identified


No practices identified

Proposal abstract:

High tunnels and greenhouses are protected agricultural structures that extend growing seasons in Kentucky and elsewhere in the South by providing frost protection and maintaining warmer soils. Many growers produce high value crops, like tomatoes, without crop rotation in these structures, yet sequential crops can deplete soil organic matter, increase salinity, and exacerbate soilborne pathogen issues, such as root knot nematodes (RKN). RKN (Meloidogyne spp.) are plant pathogenic roundworms with a sedentary adult female stage on roots. RKN can reduce tomato yields up to 60% in protected structures (Talavera et al., 2009).

Current RKN management strategies include soil fumigation, chemical nematicides, or resistant varieties. Fumigants are restricted-use chemicals that are most effectively applied by contracting with professional fumigation companies for a fee. Most growers are unable to use this approach due to poor access to fumigation services and incompatibility of equipment with the enclosed space of protected agricultural structures. Fumigants are also harmful to the environment and nonspecifically sterilize soils, eliminating beneficial microbes and soil animals in addition to soilborne pathogens. With nerve toxins as active ingredients, chemical nematicides effectively manage RKN populations, yet must be applied with great care as a result of potential non-target effects on applicators (Mitkowski and Abawi, 2003). Chemical nematicides may have difficulty moving through heavy soil profiles, resulting in only partial efficacy. Neither fumigation nor chemical nematicides are permissible management options for RKN in certified organic systems. Resistant tomato varieties are available to reduce the impact of southern RKN (M. incognita), however, this resistance “breaks” at high soil temperatures (Mitkowski and Abawi, 2003) and is ineffective against northern RKN (M. hapla). Grafting can be an effective strategy to grow desirable tomato varieties in RKN infested soils, however, these plants can be expensive in terms of labor and/or cost, and the rootstocks typically are not effective against northern RKN. Both southern and northern RKN are found in Kentucky soils, as well as other states within the southern region.

Long-term, economically sustainable production within protected agricultural structures is closely related to maintenance of soil quality. Measures of soil quality include soil organic matter, salinity, and pH. Organic matter stabilizes aggregates in soil, which improves texture, allows for better aeration and root system development, and promotes communities of beneficial microbes (Shepherd et al., 2002), which are components of disease-suppressive soils. High salinity and pH reduce the ability of plants to take up water and micronutrients and contribute to crusting and poor soil structure. Composted manure is one strategy to increase soil organic matter, but increasing concerns about the introduction of foodborne pathogens have led to avoidance of manure use in commercial production. Currently, growers in the Southern region lack solutions that are both effective and environmentally sustainable for simultaneous problems with RKN and soil quality in protected agricultural structures.

Project objectives from proposal:

  • To determine the efficacy of brassicaceous cover crops in reducing root knot nematode populations, augmenting high tunnel soil organic matter and salinity, and increasing tomato yields.
  • To educate growers and extension agents on vegetable production and disease management in high tunnel systems.
Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture or SARE.