Evaluation of Apple Cultivars for Hard Cider Production in the Northeast

Final report for FNE20-960

Project Type: Farmer
Funds awarded in 2020: $8,980.00
Projected End Date: 03/31/2022
Grant Recipient: Walden Heights Nursery & Orchard
Region: Northeast
State: Vermont
Project Leader:
Todd Parlo
Walden Heights Nursery & Orchard
Expand All

Project Information


Our project involved apple cultivars for potential use in hard cider production, especially varieties that thrive in northern climates and under organic/sustainable growing practices.

The hard cider market has been growing exponentially, but there is a scarcity of suitable, domestically grown apples to meet the demand.  To successfully capitalize on this new market, growers need to know which apples to plant and which apples already in their orchards are suitable for hard cider production.  There is little unbiased and scientific data available to farmers interested in supplying fruit for this distinctive market.  Current information is limited to nursery catalogs/websites with a commercial interest and University/Extension publications that are meager in terms of numbers of cultivars assessed and details.

Our orchard in Walden, Vermont (zone 3) served as our test site as we cultivate more than 600 distinct apple varieties.  While we keep records routinely, this project allowed us time and resources to employ proper methodology for data collection, assessment and dissemination of findings to growers.

A selection of over 300 trees in our orchard were tested for fruit evaluation including brix (sugar) content for fermentation, pH, titrable acidity, polyphenol content. 

Since some of these cultivars have multiple uses, our project findings will likely benefit more than just hard cider/wine makers.

Outreach includes speaking engagements, workshops, our farm website, internet blogs, announcements to relevant organizations (including extension services and universities) for distribution to regional meetings, social media, listservs and podcasts.

Project Objectives:

This project sought to provide crucial information regarding apple cultivars as it relates to the expanding cider market. 

As an orchardist, consultant, and nurseryman, I have seen the emerging cider market drastically alter the apple varieties being planted. Since very little data exists, many farmers are making poor choices and costly mistakes, often planting too tender of a variety for their region, or planting cultivars with limited use (many cider varieties have no other use beyond hard cider).  Our data allows  growers to make informed choices by reviewing our data and finding uses for each variety, including those that will be desired by the cider market and grow well in the region.

We tested and printed data on over 200 apple varieties in our zone 3 orchard.  Information collected includes  pH, brix (soluble solids/sugar) tannin observations, acid titration.  

The purpose of this study was to create a first step data base for evaluation. That is, to allow for an initial filter for cultivar selection. Since there are thousands of variety choices, this gives orchardists and others in the industry a baseline for further selection criteria. The outcome is that time, money and effort are reduced and more informed decisions may be made. 



Growing apples in the Northeast is challenging, especially for small scale, organic and sustainable farms.  Hard cider and specialty fresh ciders/juices can be a new market for these farms, but selection of varieties for these markets will be of great importance, as the cider industry is particular about the apples/cider they will purchase.  The lack of good information, specifically the unbiased, extensive and clearly stated data on apple cultivars for the cider market is a problem.

In order to produce dessert fruit for a market that demands unblemished fruit, apples are one of the most widely sprayed crops in agriculture.  Shamefully, less than perfect fruit is sold for near the cost of production. The USDA 2019 report1 shows an average of less than 10 cents per pound for processing apples (3 cents per apple), less than 10 percent of dessert grade. This means orchardists are forced to spray extensively or risk receiving pennies a pound. Not only is this path expensive, but it escalates environmental and health risks in agriculture. Alternatively, apples for cider grade need little or no pesticide application.

As an example, our own farm traditionally sold sprayed organic fruit.  When we experimented with a no spray policy for 2 years we sold much of the crop as cider, saving thousands of dollars in spray costs alone. Overall profitability was greater than in years we sprayed, and we reduced any potential environmental damage.  We were able to do this because we have the proper varieties to market to the cider industry, at a higher return.

The hard cider market is experiencing impressive growth.  In 2017, hard cider sales in the US were $470 million ($118 million from small producers – a 41% increase in 2016 alone)2.  But need for cider fruit is exceeding local production making the import of fruit the only option.  Experts in the field have expressed increasing interest in expanding to meet this demand, but there is little information to assist growers in selecting appropriate apple varieties. 2 

For instance, cidermakers may have their list of favorites, but this is of little use without an understanding of how these varieties fare in our climate and which apples would be suitable replacements for varieties that do not do well in the Northeast.  Since there is little unbiased data on which varieties to plant or retain, farmers are likely to make poor selection choices. This can be disastrous.  Cornell University reflects this position: “Our data shows that traditional hard cider apple varieties are in demand from the hard cider producers, but growers have reservations about planting these varieties. Cidermakers and apple growers would likely benefit from working together to identify which varieties will best match each other’s needs...." 2 

Growing for the cider market is likely to yield:

  • improved productivity, reduced costs and/or increase of net farm income as cider/culinary grade fruit requires far less management and expenditures;
  • soil conservation, improved water quality, and protection of natural resources as pesticide application, fuel use and use of other inputs would be reduced;
  • enhanced employment in farm communities as a farmer can spend less on pesticides and more on labor (harvest, processing); and
  • reduced environmental and health risks that improve the quality of life for farmers, farm employees, and the community with less use of harmful pesticides and fungicides.

Despite the potential for cider market sales, growers should hedge their bets. Orchards are vulnerable to market whims, so selecting cultivars that can serve a variety of markets is a wise maneuver. With the aid of good cultivar data (pH, sugar, tannin levels, etc.) a grower can select varieties that suit hard cider, but are also useful for fresh cider, cooking, and fresh eating.  Clear data will also help farmers make good selections for organic growing practices, disease resistance and plans for adapting to markets in times of glut. The degree of information necessary for these decisions is almost nonexistent. 

Our project evaluated over 200 cultivars of apples and published a report and database that will aid farmers in deciding which apple varieties to plant, retain, and market. 

Since tree fruits take years to bear, can produce for decades, and have high establishment costs ($15,000/acre) cultivar selection is of paramount importance.  Our research will give orchardists, mixed production farms, and producers (like cidermakers) the information necessary to make intelligent and cost-effective decisions.

Description of farm operation:

I have been involved in plant science for over 30 years, and established Walden Heights Nursery and Orchard 25 years ago, in Walden VT (US zone 3). I am current owner and manager of WHNO. We have a fruit tree arboretum of over 600 distinct varieties, and includes thousands of established fruit trees, bushes and vines managed under certified organic practices, sustainable agriculture, and permaculture principles. The farm has a processing component and storage facility for cider production, etc. We are also a propagation-style nursery, producing nearly all our own stock for sale and farm use. We have a retail and shipping business. Additionally the enterprise offers consulting, educational workshops, and other services.


Click linked name(s) to expand/collapse or show everyone's info
  • Terence Bradshaw - Technical Advisor (Researcher)


Materials and methods:

Our project involved fruit analysis for over 200 cultivars of apples,  to assist farmers in deciding which apple varieties to plant, retain, and market. The data was collected weekly throughout two growing seasons (2020 and 2021).  Fruits were juiced, tested in house, and then frozen for lab testing periodically. 

All trees were grown in similar soil conditions, and in most cases similar aspect, altitude and competition pressures. At least two varieties of each cultivar are contained in the orchard. Orchard location is northern Vermont, US zone 3a, at 1,700 feet.

Measurements for fruit analysis include:

  • Brix Level (Soluble solids) - This is generally speaking the sugar levels in the fruit. Readings were obtained through the use of a refractometer for the intitial, on farm testing. A second readying was taken by the UVM lab after a delayed period (frozen then thawed samples).  All material was collected from expressed fresh  juice from newly picked apples.  Only tree ripened fruit was used. On farm refractometer testing was temperature calibrated and approximately every 20 samples were cross-checked using a hydrometer.  Several samples of each variety were tested to develop a good estimate of accuracy. Brix level is useful for understanding end use, particularly in hard cider production, as it shows the fermentable sugar, contributing to ABV (alcohol level, flavor, preservative qualities and viscosity. Alcohol has importance in cider stability, body, etc. in addition to its apparent use. 
  • pH - On farm (initial) readings were taken electronic titration unit. Analysis taken at 68 degrees or calculated for adjustments. Juice for testing was expressed from several average apples.  Juice is extracted in a commercial juicer, using full apples, with seeds removed, as with brix testing. Meter probe was left in solution for 5 minutes to get a good reading. A second pH test was made by the UVM lab.
  • Polyphenols (includes tannins)- Conducted by the University of Vermont food science lab using the Folin-Ciocalteu method. 
  • Acid Titration- This is the actual reading of juice acids, which in apples is primarily malic acid. It is distinct from pH, despite a relationship. Acids play a pivotal role in cider body, mouthfeel, flavor, and preservation. The UVM lab performed the acid testing through titration. 


Summer and fall 2021: Fruit examples were collected, sorted, and preliminary testing was done. This included the following:

  • cultivar assessment for confirmation.
  • samples juiced
  • phase 1 brix test for each sample
  • phase 1 pH test for each sample
  • higher volume juice samples were vialed for further testing
  • approximately 250 samples were generated

January 2022: Higher volume samples (juice) delivered to University of Vermont food science/ag dept. for phase 2 testing.

  • Approximately 220 samples delivered
  • Testing  will include polyphenol, pH, titratable acid, brix levels. 
  • Quoted lab duration estimated at 4 weeks, dependent on staff limitations and available supplies. (Late February target). 

January 2022: Orchard performance data complete.

Research results and discussion:

sare cider whno final version 2

We were able to secure samples and perform testing on nearly 320 distinct apple varieties. The accompanying documents display the following data:

  • On farm testing of brix/soluble solids level
  • On farm testing of  pH levels. 
  • Lab testing of brix levels (this and following testing done at the University of Vermont Foods Science lab)
  • Lab testing of pH
  • Lab testing of acid levels (acid titration)
  • Lab testing of polyphenols (i.e. tannin levels)

We were able to create here a robust amount of data for comparison. The intent of this data pool is to form a first level of inquiry into juice selection based on cultivar. Useful for the public will be to compare brix, polyphenol, acid and pH levels of each variety against one another to determine where types may fit in their mixes, or in their orchards. It should be noted that numbers like these should be used as a first step in the criteria. In no way will  data alone determine the efficacy of a juice for fine cidermaking. It does allow for the initial filtering point in the process. 

Notable observations we had during the study:

  • Soluble solids testing (refractometer/hydrometer units) on farm showed higher levels than lab brix levels. Lab samples were tested several weeks later (frozen samples) and centrifuged. It is likely that the lab process and possible partial fermentation accounted for the discrepancies. 
  • Many dessert/multipurpose apples performed admirably when considering usefulness in hard cider making
  • Crabapples in particular had a tendency for high brix and tannin levels. This was expected. Crabs are too infrequently used in the industry. 
  • Environmental (weather) factors, site, and harvest date can have a significant influence on chemical levels in the fruit juice.

Interesting comparisons:

  • highest on farm brix readings: centennial and kerr crabapples (19)
  • highest lab brix readings: small fruited crabapple (18.9)
  • lowest on farm brix readings: 20 oz, etc. (9)
  • lowest lab brix readings: NY 75414 (6.7) later picked sample higher
  • highest polyphenol levels: white angel (4323) for crab; 79 cider (4281) for midsized cider apple; Yarlington Mill (2650) traditional; Parkland (3317) for commercial eating apple
  • lowest polyphenol levels: small fruited crab, baccata crab (248,268 respectively), Davey (a dessert apple) was lowest at 102
  • highest acid readings: baccata crabapple (26.97) 
  • lowest acid readings: beautiful arcade (2.43)
  • lowest pH readings (on farm): white selkirk (2.71)
  • highest pH readings (on farm): wodarz and golden lights (4.01)

Additional observations:

  • The kazakhstan second generation seedlings, with its more distinct genetics (less influence of comingling with breeding) displayed dramatic differences in the chemical makeup of the fruit juice. Among these were the polyphenol levels which ranged 322 to 2845. This range puts them lower than most dessert fruits, and higher than traditional cider apples like Yarlington Mill. The acid levels ranged 4.44 to 7.87. Brix levels varied from 12.75 to 15. We expect these levels to be even more wide ranging for our future testing as we only sampled 3 of our several dozen kazakh trees. This shows that the genetics from pools distanced from modern breeding holds promise for cidermaking. 


  • some crabapples have acid levels comparable to citrus fruits
  • some crabapples show the quite low acid and polyphenol levels (although this is not frequent)
  • feral apples have a widely varying display of chemical attributes
  • apples in the commercial dessert and processing market often have chemical levels consistent with other types and can play a large part in the cider industry
  • Local farm selections, feral apples, and seedling crabapples can increase the diversity of attributes in the cider mix. This can allow cidermakers to make distinct blends, uncopiable in a competitive marketplace. Many of these types are highly acclimated and hardy for each particular region and thus are less risky to the orchardist. 


Research conclusions:

The intent of the study is to take the first steps in assessing which apple varieties already in circulation could prove useful in the newly emerging hard cider industry in the US and abroad, particularly in cooler regions like the northeastern US where this study was performed. Currently, craftspeople are being coached to use and growers coached to plant traditional cider apples, many of which are difficult to obtain, and often unreliable in the orchard. By increasing the pool of possible candidates already in existence in the market (and in orchards) those involved have greater opportunity for success. 

It was also our intent to show that using multipurpose apples, already growing in orchards (and often eschewed by many cidermakers), can possibly satisfy some of the industry needs. 

The numbers we came up with clearly demonstrate the validity of our assumptions. Chemical measurements in this sample pool were wildly varying. These not only displayed the overall ranges, but also showed that there were distinctions of importance in all subsets. Dessert fruits, crabapples, traditional cider varieties, feral apples and others all showed great variation in the expressed juices. 

Although it is not our intent to make recommendations to cidermakers, or more particularly to orchardists, it is important to note that many multipurpose apples already in the nursery trade, in orchards currently, and attainable in the future can provide good material for the hard (and additionally the sweet) cider market. 

If in contrast the industry pressures farmers to plant distinct cider varieties, some level of risk exists. Typically these are traditional cider apples, but also include some new feral grafts, crabs, etc. with high tannin and acid levels. Many are bitter. This may not be problematic for the cidermaker, or for all parties if the market stays strong. However, if that market fluctuates, or has some level of recoiling, this type of fruit is nearly unmarketable to other venues. It was our hope to show that there is some promise in using apples that can fit multiple functions in order to reduce the risk to farmers. This can also reduce the risk to cidermakers by understanding there is greater volume of usable types available. It also should be repeated that many traditional cider apples are hard to grow in many locations, particularly in the northern US, and many are strongly biennial. 

The prospective orchardist or craftsperson should view this data as a first step in making an informed decision. It allows a manager to begin the process of cultivar selection by looking at raw chemical numbers. Note that these are derived from fresh or frozen juices, not from a fermented beverages. All types of aromas, flavors, texture and nuances are only to be guessed at. This study will make it far easier to make sense of those attributes, and to help launch a project in a more informed manner. 



Participation Summary
1 Farmers participating in research

Education & Outreach Activities and Participation Summary

7 Consultations
4 On-farm demonstrations
3 Online trainings
5 Tours
5 Webinars / talks / presentations
2 Workshop field days
6 Other educational activities: Cider events, workshops, and speaking engagements distinct from those listed which we feel are likely off-farm during the next year.

Participation Summary:

250 Farmers participated
10 Number of agricultural educator or service providers reached through education and outreach activities
Education/outreach description:

Note that not all of the above are scheduled outreach, not necessarily completed. Included will be podcast appearances, workshops, presentations at professional group meetings, tutoring and consulting, and speaking engagements.

  • Consultations: To date we have been discussing data with clients hoping to enter (fully or as an adjunct) the cider industry. 
  • Factsheets are currently being developed for distribution and on our website
  • Demonstrations: provided during on farm tours to clients and visitors (Walden Heights Orchard)
  • Online trainings: through virtual consulting
  • Articles and newsletters are planned and will include our business newsletters, the holistic orchard network newsletter and periodical, and others that have published or displayed our work in the past (i.e. nafex, the cider workshop group, the good fruit grower magazine, etc.) 
  • Tours: we have held 10 small tours this year in which the study has been discussed. We have seasonal cider season tours each fall. 
  • Webinars and presentations: we have a national podcast interview slated for this summer (ciderchat.com), will do a fall presentation of the study here at the farm, have a winter talk schedule in Massachusetts for the Berkshire apple growers group and the Berkshire Cidermakers group the following day (March 2023). We are currently researching other engagements.
  • We are holding workshops this fall at the farm on cidermaking and apple growing in which the study will be discussed. We will also discuss the study during our regular workshop dates winter-summer 2023. 
  • Although we have connected with only a couple of agriculture/professional educators and advisors we will be discussing this study further through our involvement in professional organizations.


Learning Outcomes

250 Farmers reported changes in knowledge, attitudes, skills and/or awareness as a result of their participation
Key areas in which farmers reported changes in knowledge, attitude, skills and/or awareness:

In general, this is a bank of raw data which addresses the concerns of cider makers. I was able to add insight to the information when engaging with clients and other interested parties. During these discussions, participants felt more confident having such data on-hand. Many of our visitors and clients, and those that I speak with during farm visits express stress in this newly emerging industry. There is much risk to be had and most know little or nothing about this new field. Not only does this give them information, but it is a good starting point for discussion and placing a physicality on the concepts I am trying to teach. It also allows them room to progress, work by themselves at the task and have further dialog with me or another consultant. They are becoming more confident. I think they are also impressed at the size of the study, especially as compared with others of its kind performed by universities and industry think tanks. Some orchardists for instance have greatly altered planting plans based on the data. Many are using a whole farm plan now as opposed to a monoculture type approach to cider apple selection, both to buffer their enterprise against vagaries in the marketplace, but also to create a more distinct farm or product. 

Project Outcomes

50 Farmers changed or adopted a practice
15 New working collaborations
Project outcomes:

The data obtained in this project allowed us to alter the perspectives regarding apple cultivars choice. By presenting comparable figures on a great many common apples already in the apple trade, crabapples, and specialty apples, orchardists and cidermakers are able to make more informed choices in either planting or purchasing varieties. The size of this study is sizable compared with any national data pools. 


We will refrain at this point from making quality statements, comparisons, etc. The strength of this work  is simply to present data to the public for whatever usefulness it may serve in the cider trade. The purpose of this body of cultivars was to compare already existing data on "bona fide" cider varieties, and to show that a larger number of apples already growing on farms in the US may find use in the cider industry. 

Assessment of Project Approach and Areas of Further Study:

Generally, the study proceeded as planned. One caveat perhaps is to have lab analysis done immediately after pressing. The delay, though small (and samples were frozen) had some impact on brix and pH levels. These were buffered by having on farm testing for these at press time. 


The resulting data has proved very useful, and we feel is robust. 

It would benefit the industry to do follow up research/data collection in successive years to show impact of yearly environmental conditions. 


Beneficiaries include hard and sweet cidermakers, craftspeople, orchardists, and others in the industry. The data also impacts other tangent concerns in the food industry (vinegar, processors, etc.) 


Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture or SARE.