Development and Dissemination of a Cowpea Cultivar for Cover Crops

Final Report for SW02-034

Project Type: Research and Education
Funds awarded in 2002: $43,686.00
Projected End Date: 12/31/2007
Matching Federal Funds: $18,974.00
Region: Western
State: California
Principal Investigator:
Dr. Milt McGiffen, Jr.
University of California
Expand All

Project Information


Cowpea cover crops are cost effective because they enrich the soil with carbon and over 100 lbs per acre of nitrogen, and can reduce pest populations. Adoption has been slowed by a lack of varieties specifically adapted to production systems in the western USA. Cowpea varieties can be selected that grow prostrate, semi-erect or erects and these characteristics have important implications with respect to weed competition and agronomic suitability. A new statistical method for determining whether one group of cultivars is distinct from another was developed and used, along with growth analysis and computer modeling, to show that the erect growth habit trait consistently conferred greater weed resistance across cultivars and weed species. In the last year we were able to identify two additional promising candidates for varietal release. The existing and new candidate cultivars produce high biomass and seed yields and have resistance to root knot nematodes, and seed shattering. The ability to withstand drought was similar for all genotypes. The candidate cultivars are currently being tested on farms in specific cropping situations to evaluate their suitability for varietal release. Information is being disseminated through talks, publications, and organic production training sessions and a manual.

Project Objectives:
  1. 1) Identify cowpea cover crop cultivars that resist nematodes, cowpea aphid, Fusarium wilt and shattering when grown in the Western USA.
    2) Disseminate seed of improved varieties and related information through the California Foundation Seed Service and commercial seed companies.
    3) Demonstrate and optimize the merits of cover crops in specific cropping systems.
    4) Disseminate information about cover crops and their advantages, and about seed production of cowpea as a new crop for limited resource and other growers.


Growers, Cooperative Extension, and the USDA have identified cowpea as an ideal summer cover crop (Cavanaugh 1998). A cowpea cover crop grows during the fallow period between spring and fall crops that is common in many western crop production systems. Cowpea cover crops are cost effective because they enrich the soil with carbon and over 100 lbs per acre of nitrogen, and can reduce pest populations (Aguiar et al 1998; Roberts et al., 2005). Spurred by rising fertilizer prices and fewer available pesticides, cowpea cover-crop acreage in California and Arizona has increased dramatically from nearly none in 1995 to several thousand acres on both organic and conventional farms (McGiffen et al 2000). Cowpea varieties currently used for cover crops lack pest resistance and other desirable traits. For example, the popular cover crop cowpea cultivar ‘Chinese Red’ is extremely sensitive to cowpea aphid (Aphis craccivora) and root-knot (Meloidogyne sp.) nematodes, being both heavily galled and supporting high levels of nematode reproduction. Another popular cultivar, ‘Iron-Clay’ has root knot nematode resistance effective only against M. incognita but not to the other important root-knot species such as M. javanica and is very susceptible to seed shattering when it is grown for seed production in the Southwest. Currently, seed of cowpea cover crop varieties is produced in the Southeastern US where a number of seed-borne viruses are endemic such as Cowpea Aphid Borne Mosaic Virus (CABMV), Cucumber Mosaic Cucumovirus (CMV), Cowpea severe mosaic comovirus (CPSMV) and Blackeye Cowpea Mosaic Virus (BLCMV). These viruses have not yet appeared in cowpea crops in the Southwest, but continuous importation of cowpea seed from this region to the Southwest is likely to result in the establishment of these diseases to the Southwest. It would be preferable to develop a locally viable cowpea cover crop seed industry.
Demand for cowpea cover crop seed has increased to levels that often outstrip supply. Highest seed yields are obtained when photoperiod sensitive varieties are planted in August in low-elevation desert environments of the Southwest in order to obtain the combination of short daylength and warm temperatures needed to trigger flowering and sustain seed production. Growers and seed companies have identified the production of cowpea cover crop seed as a new crop opportunity that could increase profits and sustain smaller producers in depressed desert regions. This grant helped to realize these opportunities by working with growers, Cooperative Extension, and the seed industry by developing and field testing improved cowpea cultivars, expand production to meet demand, and disseminate results to clientele to encourage the expanded use of cover crops and sustainable practices.
Cowpea cultivars currently used to produce dry grain ‘blackeye beans’ have resistance to several species of nematodes (Matthews et al 1998), Fusarium wilt (Fusarium oxysporium) and other pests (Hall et al 1997) and compete well with weeds (Hutchinson and McGiffen 2000). These varieties produce less than optimum biomass because they flower early and their seed is too large to be economical as a cover crop. We developed new cultivars that incorporate ideal cover-crop traits, including small seed size, photoperiod-sensitivity, non-shattering pods, high biomass production, and broad-based resistance to root-knot nematodes and Fusarium wilt. Because nematode (Roberts et al., 2005), weed, and other pest populations decline after planting resistant cowpeas ( McGiffen et al 2000), these cover crop varieties could help reduce the need for fumigation and other chemical pest control inputs in some situations.


Click linked name(s) to expand/collapse or show everyone's info
  • Jeff Ehlers
  • Philip Roberts


Materials and methods:

Earlier stages of the project focused on developing new cowpea genotypes. The results for this year are from experiments that test the ability of novel, existing, and hypothetical cultivars to suppress weeds. Cowpea varieties have three distinct growth habits: erect, semi-erect, and prostrate. . Field experiments compared the relative competitiveness of an erect, a semi-erect and a prostrate cowpea genotype with a tall weed species (common sunflower) or a low-growing species (common purslane) conducted in 2003 and 2004. Greenhouse experiments compared the relative competitiveness of two erect, two semi-erect and two prostrate cowpea genotypes with common sunflower or a common puslane in 12 replacement series experiments conducted in 2003 and 2004. Growth analysis of the six cowpea genotypes and two weed species were also conducted to investigate the relationship of competitiveness and growth.

Our hypothesis was that the growth habit trait would have a similar affect on competition with weeds across several cowpea genotypes (i.e. varieties). We wanted to statistically compare varieties as groups within a growth habit, e.g. are the erect genotypes generally more competitive than a group of prostrate cowpea genotypes? We soon found that current statistics were inadequate to statistically compare groups. We found this was a problem that went well beyond our project, as plant breeders and others would often like to statistically compare groups of cultivars, e.g. do all the late maturing varieties better resist pests or have greater yield than early maturing cultivars? To solve the problem of comparing groups we extended ordered hypothesis testing procedures on population means to a context where the means are grouped according to a higher-level indexing variable and the hypothesis is that the groups are isotonic with respect to the indexing variable. The test procedure was derived by combing the existing test procedure for a fully monotone ordering of the means with the intersection-union principle for decomposing a complex null hypothesis into elemental forms.

To better extend our results for future management and research decision making, we developed an ecophysiological model of cowpeas and weeds. Ecophysiological simulation models provide a quantitative method to predict the effects of management practices, plant characteristics, and environmental factors on crop and weed growth and competition. The INTERCOM interplant competition model was parameterized, calibrated by monoculture data for three cowpea genotypes that differed in growth habit, common sunflower, and common purslane, and used to simulate competition of cowpea cover crops with sunflower or purslane. The simulation results were compared with observations from the field experiments described above.

Research results and discussion:

Objective 1: Identify new cover crop cultivars. As reported last year, new cover crop cultivars have been developed that incorporate nematode resistance and other desirable agronomic traits.

Objective 2: Disseminate seed of improved varieties and related information: In 2006 we increased seed of the promising candidate cultivar to 200 lbs. This will provide sufficient seed for large-scale grower trials. We have begun to get novel cowpea genotypes to growers, and have been working with them to conduct meaningful on-farm tests in desert and inland valleys.

Objective 3: Demonstrate and optimize the merits of cover crops: On-farm experiments and grower contacts have identified biomass production and pest resistance as highly desirable traits for new cover crop varieties. A major focus of the breeding program has been selecting for genotypes with high biomass production and resistance to nematodes, aphids, and diseases. The three novel genotypes that we have recently developed, CC-85-2, CC-27, and CC-36, were selected based on their biomass production and enhanced nematode resistance.

Weed control is the greatest expense in producing many crops. Minimizing weed control costs is even more essential for cover crops than cash crops as there is not a direct financial reward for growing cover crops. If the cost of controlling the weeds exceeds the potential nitrogen and other benefits, then the cover crop is usually plowed under prematurely. However, breeding for resistance to weeds is a concept that has often been suggested, but seldom attempted. A major reason why no food crop or green manure had been specifically bred with traits that resist weeds is a lack of knowledge. Breeders do not know which genetic traits would confer weed resistance, or how to detect traits that could potentially help crops out-compete weeds.

In the many field trials of genotypes conducted prior to the start of W SARE funding, we observed how cowpea growth habits affect the ability of cowpea to shade the soil. Cowpea growth ranges from erect to prostrate. Initially we hypothesized that the rapidly spreading vines of the prostrate genotypes would have the greatest ability to shade out weeds. However, a preliminary experiment found that an erect genotype, Iron Clay, had the greater ability to compete with sunflower than semi-erect 288 or prostrate growing 779 (Wang et al. 2004). IC biomass was less affected by sunflower, received more light when growing with sunflower, and caused a greater decline in sunflower biomass and leaf area than 288 or 779.

We used replacement series to compute the aggressivity index (AI) of six cowpea genotypes to confirm the most competitive growth habit. We also investigated the relationship between AI and growth parameters to identify the growth parameters associated with competitive ability (Table 1).

Twelve replacement series experiments were conducted with sunflower or purslane competing with one of six cowpea genotypes of similar vegetative vigor and maturity but different growth habits to compute the aggressivity index (AI) of six cowpea genotypes to confirm the most competitive growth habit (Table 1). We also investigated the relationship between AI and growth parameters to identify the growth parameters associated with competitive ability. These were selected because earlier evaluations (Ehlers, unpublished data) showed them to be promising cover-crop cowpea genotypes with similar maturity and vegetative vigor. Common purslane, a short statured weed, and common sunflower, a tall species, were selected to represent cowpea competitors with different growth types. Five proportions of two species (cowpea with sunflower or cowpea with purslane) were used: 100:0, 75:25, 50:50, 25:75, 0:100

The experiment was a randomized complete block design with four replications. Cowpea and weed seeds were planted on July 10, 2003 and Aug 16, 2004, then thinned to the desired density and proportion five days after germination. All plants were harvested when cowpea had reached their maximal pre-flowering size at 690 degree-days after planting (single sine method (Zalom et al. 1983) using an 8.5 oC base temperature (Hall, 2001)), i.e. on Aug 18, 2003 or October 1, 2004.

Shoot biomass was removed at the soil level and plants were separated by species. Dry weights of each species were obtained by leaving plants at 70oC with ventilation until a constant weight was reached. To compare the competitive ability of cowpea genotypes against sunflower or purslane, relative yield total (RYT) and aggressivity index (AI) were calculated. Data on plant dry weight RYT, and AI were subjected to analysis of variance (ANOVA) and treatment means separated using Duncan’s test at the 0.05 probability level. An ANOVA of treatment and year showed no significant treatment and year interaction, so plant growth data for the two years were combined. Because the ANOVA showed that weed species affected cowpea growth and cowpea genotypes affected weed growth, separate comparisons were derived for each weed species and cowpea genotype. To test if the same order exists in this glasshouse experiments with more cowpea genotypes, we used the isotonic regression method presented by Robertson (1988).

When grown with sunflower, neither cowpea genotype or growth type affected the RYTs (Table 2). When grown with purslane, cowpea genotype did affect the RYTs, but the differences disappeared when averaged over cowpea growth types. The overall averages for six cowpea genotypes with sunflower or purslane were very close to 1 (0.98 for cowpea and sunflower; 0.97 for cowpea and purslane), indicating that cowpea used the same resources as sunflower or purslane.

When grown with either sunflower or purslane, there were significant growth type, genotype, and proportion effects (all p<0.001) on AI, but the interaction of growth types and proportion or genotypes and proportion was not significant (all p>0.19). When grown with sunflower, erect genotypes and semi-erect genotypes had higher AI than prostrate genotypes, (Table 3), indicating that erect and semi-erect cowpea genotypes were more competitive with sunflower than prostrate genotypes. When grown with purslane, erect and prostrate genotypes had higher AI than semi-erect genotypes, indicating that erect and prostrate cowpea genotypes were more competitive with purslane than semi-erect genotypes.

The relative yields of cowpea were averaged by growth type, then graphed with those of competing sunflower or purslane (Figure 1). When competing with sunflower, the relative yield of prostrate cowpea genotypes decreased faster than that of erect or semi-erect genotypes, and the relative yield of sunflower increased faster when competing with prostrate cowpea genotypes. This indicates that the erect and semi-erect cowpea genotypes were more competitive to sunflower than prostrate cowpea genotypes. When competing with purslane, the relative yield of semi-erect cowpea genotypes decreased faster than erect and prostrate genotypes. The relative yield of purslane increased faster when competing with semi-erect cowpea genotypes. Erect and prostrate cowpea genotypes were more competitive to purslane than semi-erect genotypes. The relative yield results are consistent with the statistical ranking of AI cowpea growth types when competing with sunflower or purslane (Table 3). It appears that the competitive advantage purslane gained by emerging one day earlier than either cowpea or sunflower (five days after planting) was insufficient to overcome purslane’s relatively short stature. Cowpea’s ability to compete with sunflower may have been related to an ability to tolerate shade.
The isotonic regression confirmed the results of Wang et al. (2004) that the order of competitive ability for cowpea genotypes erect> semi-erect > prostrate when grown with sunflower, and erect > prostrate > semi-erect when grown with purslane (full discussion of statistical analyses available upon request).
Results of the replacement series were related with data from growth analysis by multiple correlation and stepwise regression. Plant growth was characterized by directly measuring parameters (seed weight, plant weight, height, and leaf area) or deriving parameters (relative growth rate (RGR), unit leaf rate (ULR), leaf area ratio (LAR), specific leaf area (SLA), leaf weight ratio (LWR), and plant height growth rate (HGR)) using functional methods (Chiariello et al, 1991). Degree-days were calculated using the single sine method (Zalom et al. 1983), with base temperatures of 8.5 oC for cowpea (Hall 2001), 7 oC for sunflower (Robinson 1971), and 10 oC for purslane (Zimmerman 1977). The overall AI was the dependent variables, and the independent variables included mean values of RGR, ULR, LAR, SLA, LWR, HGR, plant dry weight, plant height, and initial seed weight. Correlations matrices of all parameters were calculated (Tables 4 and 5), and stepwise regressions were performed.

Correlation and regression were performed to determine which growth parameters best predicted the aggressiveness of cowpea genotypes and weeds. When grown with sunflower, the parameter least correlated with AI was RGR (Table 4). This is consistent with the study by Roush and Radosevich (1985). Plant height had the strongest relationship with AI. Stepwise regression showed that SLA, plant height, and seed weight best explained the variation of AI, indicating larger initial size, higher position and larger leaf area per unit leaf weight to capture more light were the more important determinants of competitive outcome. The equation was AI = 0.50 – 62.48 * SLA + 0.01 * Height – 0.22 * Seed_weight. The R2 for the equation was 0.996.

When grown with purslane, the least correlated parameter was plant height, and the most correlated was ULR (Table 5). The equation selected by the stepwise procedure included ULR, SLA, and biomass, indicating the efficiency to produce new growth, larger leaf area per unit leaf weight, and plant size were the most important plant growth parameters in determining competitive ability. The equation was 1.37 – 1.30 * ULR –78.49 * SLA + 0.063 * Dry weight. These three variables explained 97.0% variation of AI.

INTERCOM Model Simulations
INTERCOM was used to simulate how increasing sunflower density decreased cowpea growth in 2003 and 2004. The hyperbolic yield loss equation was fitted to the simulated data and compared with the observed biomass loss data. INTERCOM accurately predicted cowpea yield loss for genotype 288, but slightly under-predicted biomass loss at low weed densities and slightly over-predicted biomass loss at high weed density for genotype 779 and IC (Figure 2).

The INTERCOM model was used to compare the effect of growth habit on crop competitive ability with weeds (Figure 3). Simulation results suggest that the erect genotype has larger biomass than semi-erect and prostrate genotypes when cowpea is grown alone. When grown with sunflower, the erect genotype has a greater competitive advantage than semi-erect and prostrate genotypes. The erect genotype produces more cowpea biomass and suppress sunflower to less biomass than semi-erect and prostrate genotypes. The semi-erect genotype is more competitive than the prostrate genotype, but the difference is small. As sunflower density increases from 1 plant/m2 to 4 plant/m2, the differences of erect growth habit and the other two growth habits are smaller. This suggests that weed density also affects the response of cowpea and weed biomass to cowpea growth habit.

Plant breeders would be most interested in what growth characteristics to enhance to make cowpea more competitive. Replacing only height growth or leaf area distribution in the above constructed theoretical cowpea genotypes showed that changing height growth or leaf area distribution from semi-erect to erect increased cowpea biomass and decreased sunflower biomass, while changing height and/or leaf area distribution from semi-erect to prostrate had opposite effects (Figure 4). Cowpea leaf area distribution had similar effect on cowpea biomass production with cowpea height growth when grown with sunflower. However, cowpea leaf area distribution had much smaller effects on sunflower biomass production comparing to cowpea height growth.

Our previous work to introduce broad-based nematode and other pest resistance has led to new genotypes that will reduce pest populations during the cover crop season and in subsequent cash crops. We have identified two genotypes that appear to be pest resistant and yield well. We are proposing CC-85-2 as a new cover crop variety. We will need another year of on-farm and other tests to verify their performance in different cropping systems, but CC-85-2 are a substantial improvement over previous releases in terms of pest resistance and yield. In addition, we will be testing two other advanced selections, CC-27 and CC-36, that appear to have higher biomass production than even CC-85-2, based on limited testing in 2005. Both of the new selections also have broad-based, highly effective resistance to root-knot nematodes and Fusarium wilt and resist seed shattering. CC-36 and CC-27 were developed from crosses between Iron-Clay and the Nigerian line IT89KD-288 that was developed by the International Institute of Tropical Agriculture.

Our research on the competitiveness of cowpea with weeds indicated that erect types were better competitors with weeds than cowpeas with semi-erect or prostrate growth habit. As a result of these findings we have selected aggressive erect growing genotypes that should be even better competitors with weeds.

Crop varietal differences in competitive ability with weeds demonstrate potential for breeding highly competitive varieties that resist yield losses from weed competition and suppress weed biomass and seed production. Competitive cultivars can reduce crop yield loss and herbicide use. However, breeding competitive varieties requires an understanding of crop-weed competition and ranking of competitive ability for a given trait. The INTERCOM Model simulations provide a valuable approach to guide crop breeding decisions.

Competitiveness is a key component of cover crop varietal value. From our work, it appears that development of cowpea cover crops with erect stature would be recommended where weed competitiveness is important. The erect genotype has taller stature and the relative height at which maximum leaf area density occurs is higher; the net result is a canopy that intercepts more light when competing with weeds. Varieties with erect growth habits have other practical advantages, including late season cultivation without disrupting the crop canopy. Other leguminous cover crop species also have erect to prostrate growth habit, and it would be interesting to see if erect types of these species are also generally more competitive than prostrate varieties.

The effect of cowpea growth habit on the biomass of cowpea and sunflower decreases as sunflower density increases. This suggests that a competitive cowpea cover crop may out-compete a tall competitor at low density, but may require supplemental control measures when weed density is high.

Acreage devoted to cowpea cover crops continues to grow. The increased interest in reducing the environmental impact of agriculture (TMDL’s, dust abatement) is spurring increased use of cover crops for both crop and environmental management tools.

Research conclusions:

Cowpea cover crop use is growing and currently exceeds several thousand acres. The improved genotypes should increase the acreage of use, and encourage new that include using cover crops instead of pesticides.
The increased demand for cover crops must be met with increased seed production. Cowpea cover crop seed is now being produced in the Southeast. Shipping charges to western areas adds significant cost to cowpea cover crop seed. The new genotypes created by this project will allow the production of cowpea cover crop seed in the low-elevation desert. This could create new economic opportunities for growers and seedsmen of these largely depressed farming communities.
We have completed cost studies that compare the economic return of vegetable production systems with or without summer cover crops (Ogbuchiekwe et al. 2004). Yield and net return were greatest when cantaloupe and lettuce were planted after the incorporation of a cowpea cover crop. Profits depended upon whether lettuce and cantaloupe were grown organically, and the price paid growers for their crops. The new pest resistant cover crop varieties developed by our current research should increase profitability by decreasing reliance on synthetic pesticides and fertilizers.

Participation Summary

Research Outcomes

No research outcomes

Education and Outreach

Participation Summary:

Education and outreach methods and analyses:

We have developed a course and a training manual on Organic Vegetable Production that will disseminate results from this project (In Press). Our first training session in Salinas had over 100 attendees. We continue to give grower talks and notify grower groups of our progress.

Refereed Publications
Roberts, P. A., W. C. Matthews Jr., and J. D. Ehlers. 2005. Root-knot nematode resistant cowpea cover crops in tomato production systems. Agron. J. 97: 1626-1635.
Ngouajio, M. and M.E. McGiffen, Jr. 2004. Sustainable vegetable production: effects of cropping systems on weed and insect population dynamics. Acta Hort. 638:77-83
Ogbuchiekwe, E.J., M.E. McGiffen, Jr., and M. Ngouajio. 2004. Economic return in production of cantaloupe and lettuce is affected by cropping system and management practice. HortScience 39:1321-1325.

Wang, G., J.D. Ehlers, E.J. Ogbuchiekwe, E.J., S. Yang, and M.E. McGiffen, Jr. 2004. Competitiveness of erect, semierect, and prostrate cowpea genotypes with sunflower (Helianthus annus) and purslane (Portulaca oleracea). Weed Science 52:815-820.

Ogbuchiekwe, E.J., M. Ngouajio , and M.E. McGiffen,. 2005. Economic return in production of cantaloupe and lettuce is affected by cropping system and value of hand weeding. HortScience 40:1007.

Wang, G., M.E. McGiffen, Jr., and J.E. Ehlers. 2006. Replacement series of six cowpea (Vigna unguiculata) genotypes with sunflower (Helianthus annuus) or purslane (Portulaca oleracea). Weed Sci. 54, 954-960.

Wang, G., M.E. McGiffen, Jr., J.E. Ehlers, and E.C.S. Marchi. 2006. Competitive ability of cowpea genotypes (Vigna unguiculata) with different growth habit. Weed Science 54:775-782.

Wang G., M.E. McGiffen, J.L. Lindquist, J.D. Ehlers, and I. Sartorato. 2007. INTERCOM simulation of competition between three cowpea (Vigna unguiculata) genotypes and sunflower (Helianthus annuus) or purslane (Portulaca oleracea). Weed Res. 47, 129-139.

Wang, G., J.D. Ehlers, P.A. Roberts, E.J. Ogbuchiekwe, and M.E. McGiffen, Jr. 2005. Weed resistant cowpeas: experiments and methods. HortScience 40:1024.

Wang, G., M.E. McGiffen, Jr., and J.E. Ehlers. 2007. Competition and growth of six cowpea (Vigna unguiculata) genotypes, sunflower (Helianthus annuus), and purslane (Portulaca oleracea). Weed Science In Press.

McGiffen, Jr., M.E. Editor. 2006. Organic Vegetable Production Manual. University of California, Agriculture and Natural Resources. In Press.

Ngouajio, M., M.E. McGiffen, Jr., and C.M. Hutchinson. 2003. Effect of cover crop and management system on weed populations in lettuce. Crop Protection 22(1):57-64

Ngouajio, M., and M.E. McGiffen, Jr. 2002. Going organic changes weed population dynamics. HortTechnology 12:95-99.

Wang, G., J. Ehlers, E. Ogbuchiekwe, and M.E. McGiffen, Jr. 2003. Competition Between Cowpea Cover Crop Varieties and Weeds. 2003. Proceedings of the California Weed Science Society 55: 150-151.

McGiffen, Jr., M.E., M. Ngouajio, D. Crowley, J. Borneman, C.M. Hutchinson. 2002. Soil organic amendments change low organic matter agroecosystems. International Horticultural Congress and Exhibition 26:289.

Ngouajio, M. and M.E. McGiffen, Jr. 2002. Sustainable vegetable production: Effects of cropping systems on weed and insect population dynamics. International Horticultural Congress and Exhibition 26:279-280.

Ogbuchiekwe, E.J., M. Ngouajio, and McGiffen, M.E. 2003. Economic return for lettuce and cantaloupe is affected by cropping system and management practice. Weed Science Society of America Abstracts 43:9.

Wang, G., Ehlers, J., Ogbuchiekwe, E.J., and McGiffen, M.E. 2003. Economic return for lettuce and cantaloupe is affected by cropping system and management practice. Weed Science Society of America Abstracts 43:9.

Tedeschini, J., B. Stamo, H. Pace, B. Huqi, M.E. McGiffen, Jr., and L. Ferguson. 2003. Organic methods of vegetation management. 4th National Integrated Pest Management Symposium p. 78.

Wang, G., J. Ehlers, E. Ogbuchiekwe, and M.E. McGiffen, Jr. 2003. Cowpea varietal resistance to weeds. 4th National Integrated Pest Management Symposium p. 85.

Wang, G., J. Ehlers, E.J. Ogbuchiekwe, and M.E. McGiffen, Jr. 2003. Competition between cowpea cover crop varieties and weeds. Weed Science Society of America Abstracts 43:8.

Melon weed control options. Melon Research Board, San Diego, CA, January 6, 2006.

Crop ecology and cover crops. Desert Valleys California Association of Pest Control Advisors Continuing Education Seminar, La Quinta, CA, September 8, 2005..

Compost uses and the organic effect. Compost Solutions Workshop, UCR Extension, sponsored by ACP-UCCE-CIWMB, September 12.

Organic vegetable handbook, organic working group, and related extension activities, Vegetable Crops Continuing Conference, Davis, CA, November 30, 2005.

Desert organic vegetable production, Desert Vegetable Crops Conference, Holtville, CA, December 7, 2005.

Organic Vegetable Production, presentation and field tour. Malaysian Organic Production Delegation, Riverside, CA, March 21, 2005.

Pests and organic production. Specialty and Organic Crops Seminar, Coachella, CA, April 20, 2005.

Cover crops and crop ecology. Pesticide Applicator Professional Association Continuing Education Seminar, Santa Maria, CA, June 15, 2005.

Small farms and vegetable production in California, presentation to delegation from Agricultural Ministry of Panama, University of California, Riverside, CA, October 7, 2005.

Presented talk “Organic and Other Alternative Cultural Systems for Carrots." Annual California Fresh Carrot Symposium, Bakersfield, CA, March 20, 2002

Presented talk “The Organic Effect”, UC DANR Organic Farming Workgroup meeting, November 13, 2002.

Presented poster “Economic Return in Production of Lettuce and Cantaloupe is Affected by Cropping System and Management Practice,” Annual Desert Crop Workshop, Yuma, AZ, December 4, 2002.

Presented talk “Soil Organic Matter Changes Low Organic Matter Agroecosystems,” Annual Desert Crop Workshop, Yuma, AZ, December 4, 2002.

Presented talk “Why Bother with Cover Crops?” Coachella Valley Farmers Educational Meeting, Indio, CA, April 2, 2003.

Presented talk “Weed Management in Citrus," North Cyprus IPM Workshop, UCR Extension, May 29, 2003

Presented talk “Soil Organic Amendments Change Low Organic Matter Agroecosystems,” International Horticultural Congress, Montreal, Canada, August 13, 2002.

Presented poster “Cowpea Varietal Resistance to Weeds,” 4th National Integrated Pest Management Symposium, Indianapolis, IN, April 9, 2003.

Education and Outreach Outcomes

Recommendations for education and outreach:

Areas needing additional study

Another year of evaluations for biomass production in the low-elevation desert and in the Central Valley in farmers fields and at University experiment stations will enable us to make a final determination as to whether CC-85-2 should be recommended for release through the California Crop Improvement Association. CC-27 and CC-36 need to be tested further in 2006 to ensure they perform consistently. The new varieties need to be tested in diverse farming systems in the final years of the grant to determine the range of appropriate applications. We have several publications in press or submitted that should appear in print over the next year. There remains a large amount of data and novel methods that have yet to be published. We have an excellent postdoctoral research associate that we hope to hire to complete the analysis and publication of all our findings, and to further push the new varieties into wide availability and use.

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture or SARE.