Project Overview
Commodities
Practices
- Education and Training: demonstration, extension, on-farm/ranch research
- Natural Resources/Environment: biodiversity, indicators, wildlife
- Production Systems: agroecosystems, organic agriculture, permaculture
Abstract:
Increasing agricultural production while also preserving biodiversity and ecosystem services is difficult and likely only possible with an understanding of the spatial variation of soil communities as pertains to soil health. A spatial biological indicator of soil biodiversity could provide an important link between soil condition, biodiversity, and resultant ecosystem services, but such an indicator is currently lacking. Soil microarthropods such as springtails (Collembola) are extremely common and dense in the upper soil (up to hundreds of thousands per square meter) and are as much a part of the soil as they are in contact with it. They are therefore likely to serve as an excellent biological indicator of soil conditions. This project will sample the Collembola communities in several land use types, including two types of agriculture: "conventional" and "agroecological." The composition of Collembolan communities will be used to quantify the link between these arthropods and indicators of soil nutrition, including carbon and nitrogen pools, with the aim of developing a Collembolan-based biotic index of soil health. The spatial variation in soil conditions and in Collembola communities will be mapped within sampled fields and made available to participating farmers. In doing so, this project will lay the basic groundwork for future applications of a bioindicator and a biological liaison of soil health.
Project objectives:
The project ultimately aims to develop an efficacious biotic index based on springtail communities. Similar to pollution indices based on aquatic invertebrates, the presence or absence of Collembola, certain genera therein, or how many there are (abundance) should be able to rapidly indicate the overall nutritional state of the environment (in this case, the top soil). Additionally, we intend to cross-validate such an indicator with spatial statistics, in order to assess how well-matched soil conditions are to Collembolan community metrics over space and time. With this being of necessary concern and interest to farmers, we plan to continue engaging Indiana farmers for the development of such an index, at no expense to the farmers other than in allowing us to sample from their fields. In the process, we hope to not only inform involved farmers of the state of both their soils and soil biodiversity, but we will also:
1.) Use this as an opportunity to educate about cryptic soil biodiversity, with Collembola as our model arthropod, garnering interest in the prospective bioindicator by recruiting further collaboration for the project.
2.) Continue the tradition of both NCR-SARE and Purdue Extension in developing and encouraging sustainable and innovative methods of agricultural monitoring among local farmers.