Project Overview
Annual Reports
Commodities
- Additional Plants: ornamentals
Practices
- Energy: energy conservation/efficiency, energy use, solar energy
Proposal summary:
Project objectives from proposal:
One coil will be placed in the center of a 30 foot compost pile. A pipe will lead from the coil to a heat exchanger in the greenhouse. The heat exchanger will be controlled by a thermostat, so that when the greenhouse calls for heat, it will pump heat from the compost pile. Likewise, when the temperature of the middle of the compost pile falls below 140 F, the thermostat will call for heat to be pumped back into the compost pile. There will be insulated holding tanks in the greenhouse to capture radiant heat in the daytime to be pumped back into the compost pile when the thermostat calls for heat. The solar heat will also help reduce the demand for heat from the compost pile. This is a closed system, and will eliminate the possibility for gas vapors from the compost pile to escape into the atmosphere. Heat tubes will be placed in the greenhouse floor to keep the root zone at the optimum temperature.
We will monitor temperatures by using temperature probes that will take readings every 30 minutes throughout the day. The temperature readings will allow us to determine how much heat is generated by the compost pile and whether it is sufficient enough to maintain a temperature of 40 to 50 F for the greenhouse. We will simultaneously be measuring the temperature of the compost pile, so that we can measure the heat loss and delivery of the excess heat from the greenhouse back to the compost pile. It will also be important to observe the length of time that it takes for the compost to produce a finished product, based on the temperature readings of the pile.
To obtain temperature readings from the compost pile, we will install coil in the center of the pile. Monitors in the pile will register the temperature every 30 minutes each day of production.